
1

Based on slides © McGraw-Hill
Additional material © 2013 Farmer

Additional material © 2020 Narahari

Logic Design (Part 5)
Sequential Logic Devices &
Sequential Circuits

1

2

Recap: Gates,Comb. Devices and Latches
•Basic logic gates (AND, OR, NOT,….)

• Built using transistors

•Combinational (more complex) logic devices
• Multiplexers, Decoders, Adders, Sub, Multipliers, Comparators (x=y?)
• Behavior modeled using a Boolean function
• Built using logic gates

•Our first storage device….D-Latch and RS-Latch
• n-bit register using D-Latches
•model of Memory using Multiplexer, Decoder and Latches

2

2

3

D-Latch Timing Diagram
• The diagram below is called a “Timing” Diagram

§ Our D-Latch is previous-state dependent
– We can think of this as a time dependency
– Moving to the right on diagram, represents forward moving time

§ The inputs & outputs to our D-Latch are on left
– Inputs/Outputs can be either “HIGH” (logic 1) or “LOW” (logic)

§ Think of this as a time-dependent truth table

WE

D

Logic level =1
Logic level =0

time®

Q

3

4

Storage Devices: Register and Memory
• Using a device (D-Latch) that can store a bit
build more storage devices

• Abstract the device: input D, WE; output/storage Q

•Temporary storage in a computer…Register
• This is where variables are stored before being sent

to the arithmetic unit for operations on them
• build an n-bit register using latches

• “main” memory

D QD

WE

4

3

5

Next: Design process for Sequential Circuits –
Finite State Machines

• Definition of sequential circuits
• Components of a sequential circuit

• synchronization using a CLOCK
• Modifying latches to work with a clock…Flip Flops
• Flip Flops are the basic unit of storage in sequential circuits

•Designing sequential circuits – methodology ?
• Finite state machine diagrams
• Mapping to truth table…..build circuit

5

6

Combinational vs. Sequential
•Combinational Circuit

• always gives the same output for a given set of inputs
§ ex: adder always generates sum and carry,

regardless of previous inputs

•Sequential Circuit
• stores information we now know how to store information (bits) !
• output depends on stored information (state) plus input

§ so a given input might produce different outputs,
depending on the stored information

6

4

7

Sequential Circuit Schematic & State Machine
•sequential circuit

• Combines combinational logic with storage
• “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

1.combinational circuit to compute output and next state
2.storage elements to store state

7

8

Sequential Circuits – The agenda
• Definition of sequential circuits

• Components of a sequential circuit

• synchronization using a CLOCK

•Modifying latches to work with a clock…Flip Flops
• These become the basic unit of storage in sequential circuits

•Designing sequential circuits – methodology
• Finite state machine diagrams
• Mapping to truth table…..build circuit

8

5

9

Are we ready to design sequential circuits and
finite state machines ?

•When do states (content in memory) change in a machine ?
•Do we let it change at arbitrary times ?

– Synchronous or asynchronous

•What do you think happens in a computer ?

•Example: Z = Y + X
• Fetch Y from memory
• Fetch X from memory
• Send to Adder
• Store result in Z

1. X,Y both need to be fetched
before sending to adder
2. Output of adder should not be stored
until addition is complete on X,Y

9

10

Synchronous Circuits…enter the Clock!

• current implication: states/storage/inputs/outputs can change
any time….this is NOT how it works in a computer
• Reality: events take place in a synchronized manner –
changes occur or are recorded at specific instances in time
•Different components all march to the same beat…

the CLOCK

10

6

11

Sequential Circuits: Finite State
Machines

•The behavior of sequential circuits can be expressed using
characteristic tables or finite state machines (FSMs).

• FSMs consist of a set of nodes that hold the states of the machine and
a set of arcs that connect the states.

• Directed graph to represent a FSM

•Moore and Mealy machines are two types of FSMs that are
equivalent.

• They differ only in how they express the outputs of the machine.
• Moore machines place outputs on each node/state

§ Associate an output with each state

• Mealy machines present their outputs on the transitions.

11

12

FSM Design Process
• The first step is to model the behavior of the machine

• Based on problem statement
• Identify what the inputs are
• Identify the outputs
• Determine what needs to be stored to capture the “state” of the machine

• Represent as a graph – finite state diagram
• Nodes: States – a state stores summary of events (until current time)
• Edges: Transition from current state to next state

• Based on input and current state
• Computed by combinational logic

• Outputs: Using Moore machine, determine value of outputs at each state

12

7

13

Design a Counter: counts from 0 to 7

13

14

Finite State Machine Representation of Counter:
Counter to count from 0 to 7 (while switch is ON)

0

1

2

3

4

5

6

7

Reset

Bubbles represent all
possible “states” for the
machine
Arrows show movement from
one state to the next while switch
ON=1.
If ON=0, FSM goes to state 0

Transitions occur at pulse of
the clock

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1

14

8

15

Example: A Vending Machine
•Accept user input (coins), when total is at least 50 cents dispense output (candy)

• We will not model the change to be returned, and only care if the input is at least 50
cents

•Input valid coins:
• Q (25cents) D (10) or N (5)

• What should it keep track of ?
• current total
• Is it 50 cents or more ?

•When it reaches 50 or more:
• Generate output

•States of the machine ?
• What should each state capture ?
• How many states ?

15

16

Finite State Machine => Sequential Circuit
•sequential circuit implements a Finite state machine

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

1.combinational circuit to compute output and next state
2.storage elements to store state

16

9

17

Sequential Logic
•Where do we start:
•Build a device, using combina\onal logic devices, to store a value….✔ done!!

• D Latch (and RS Latch) – stores 1 bit
• concept of memory

•Build other storage devices using the D Latch and logic devices we have at our
disposal (i.e., in our library)… ✔ done!!

•What is the methodology behind design of sequen\al logic circuits
• Finite State Machines to Truth Tables to Circuit
• How do we synchronize/coordinate changes in state ? When do we allow states to

change ? ….. CLOCK

•Combine sequen\al and combina\onal logic devices to “assemble” a simple
processor!

17

18

Latches and Flip-Flops and Clock
•Latch: basic circuit for storage (a D-latch stores 1 bit)

• Operate on changes in Level (i.e., 1 or 0)

•Flip-flop:
• Sequential circuits take input from output of storage
• Latches that work on change of level can lead to unstable sequential circuits

§ As level changes the outputs change --- inputs change!
• Flip-Flop circuits designed to operate properly when they are part of a sequential

circuit
§ Modify D Latch to get a D Flip Flop (DFF)
§ Flip Flop changes state at the ‘instant’ that the level changes

§Clock:
§ Need to coordinate and synchronize when states change…
§ Use Clock to enable or disable the devices in a timed manner

18

10

19

Are we ready to design sequential circuits and
finite state machines ?

•Is something missing ?

•When do states change in a machine ?

•Do we let states change at arbitrary times ?

•What do you think happens in a computer ?

19

20

Clocked Flip-Flops/Circuits
•Subsystem in a computer consists of a large number of
combinaUonal and sequenUal devices

• Each sequen\al device is like latch which is in one of two states
• As machine executes its cycle, the states of all sequen\al devices change

with \me
•To control large collecUon of devices in an orderly (synchronized)
fashion, machine maintains a clock

• Requires all devices to change their states at the same ?me
• Clock generates sequence of pulses

• Much easier to design, debug, implement, and test

•How do we change latches so that they allow change in state
synchronized with the clock ?
•SequenUal logic circuits require a means by which events can be
sequenced…..clock!

20

11

21

Introducing - The Clock!
•A clock controls when stored values are “updated”

• Electrical waveform – sends pulses through a circuit
• Changes values at a periodic rate

• The clock will act as the ‘heartbeat’ of our system
• The number of cycles per second is the clock frequency measured in

cycles per second or Hertz (Hz)
• The clock period refers to the duration of one clock cycle. The period

and frequency are inversely related.
§ Typical clock frequency: 2.5GHz = 2.5 x109 Hz
§ So corresponding clock period = 1/(2.5 x 109) = 0.4x10-9 sec

– That would be: 0.4 nanoseconds

“1”

“0”

time®One
Cycle

21

22

Attaching Clock to D-Latch
• Attach CLOCK to the WE on D-Latch
• We create “windows” of time that we can store data into latch

§ When the CLOCK is “HIGH” – D-latch is open
§ When the CLOCK is “LOW” – D-latch is closed

• D=Q while CLOCK is High
• We have to prepare what we wish to store, right before latch closes

CLOCK

D

Q

open openclosed

time®

D

WE clock

Oops…changes in input while clock=High cascade to output Q
- Q can change multiple times during clock cycle: not synchronized with clock

22

12

23

Why Clocked D-latches may not work
• Sequential circuit: the next state (and output) depend on values of current state and
input

•If input to D-latch changes while clock is High, then next state (and output) can
change during this single clock cycle

• state we want to store as next state could be overwritten..Race Condition
• we want to force changes (in state and input) to be synchronized to the clock – at a
precise instant in time

• allow input/states to be read and output/next state to change ONCE per clock cycle

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

23

24

Enter the Flip Flop….
• Flip flops are edge triggered devices

• They capture the input and change state when the clock changes level
§ Positive edge triggered: when clock goes from 0 to 1
§ Negative edge triggered: when clock goes from 1 to 0

•We refer to the D flip flop as an edge-triggered device.
• D=Q ONLY when WE changes from 0 to 1

•This differs from D latch, which is: level-triggered
• D=Q anytime WE equals 1

24

13

25

D Flip-Flop vs. D-Latch – Timing Diagrams

D

Q

WE

Timing Diagram for DFF:

D

Q

WE

Timing Diagram for D-Latch:
Observe difference in how output Q
synchronizes with clock edge in DFF

D Flip-Flop vs. D-Latch – Timing Diagrams

D=0 D=0

D=1
D=1

D=0 D=0

D=1

D=1

D=0

25

26

D Flip-Flop …. Using D Latches
•D Flip-Flop is a pair of D latches

• Isolates next state from current state
• Output of DFF read when clock is high, Next state stored end of cycle

•Two phases:
• Clock = 1: WE1 =0: Latch #1 closed, WE2 =1: Latch #2 open
• Clock = 0: WE1 =1: Latch #1 open, WE2 =0: Latch #2 closed

D

Clock

Q
Latch #1

Latch #2

Qinter

WE1 WE2

26

14

27

D Flip-Flop timing Diagram

D

Qinter

Q

D

Clock

Q
Latch #1

Latch #2

Qinter

Clock L1-closed
L2-open

L1-open
L2-closed

L1-closed
L2-open

L1-open
L2-closed

WE1 WE2

27

28

D Flip-Flop
• We can think of the D Flip-Flop as a 1 bit storage container with an input, D,

and an output, Q and connected to a clock input
• A set of D flip-flops can be grouped together with common Clock and WE

inputs to form a register -- replace D-latch with D flip flop

D Q

Clock

Flip-Flop

1
0

1
0Truth table for DFF:

X = don’t care (i.e, 0 or 1)

28

15

29

Our basic “Storage” Devices

D QD

WE

DFF QD

CLK

RS
Q

S Q’
R

RS Latch – Stores 1 Bit, Level-Triggered
-1 “forbidden” input: S=0, R=0
-Holds Data when RS=11

D-Latch – Stores 1 Bit, Level-Triggered
-No “forbidden” inputs (fixes RS Latch)
-D=Q when WE=1
-Holds Data when WE=0

D-Flip-Flop – Stores 1 Bit, Edge-Triggered
-No “forbidden” inputs
-D=Q when WE (CLK) transitions from 0 to 1
-Holds Data for WE=1 or WE=0

-Except when WE transitions from 0 to 1

29

30

One more tweak…
D Flip-Flop with Additional Write Enable

• From previous slides, we attached clock to WE of the D-flip-flop
• Now, we add another WE line to the flip flop

§ Just holds onto data already stored in DFF
• Give it the ability to “ignore” the clock!

D Q

Clock

Flip-Flop

WE

w/WE

0
1 D Q

Clock

DFF

WE

30

16

31

Next: Design methodology for sequential logic
circuits .. Finite State Machines

•We have storage devices and method for synchronization
• Flip flops and Clock

•How do we design a clocked circuit to solve our problems ?
• Example: Is there a methodology behind designing a circuit to implement a

Counter ?

• Provide procedure for designing Sequential circuits (to implement
Finite State Machine)

• Storage Device to store state: D flip flop
• Logic to implement next state: combinational gates/devices
• How to derive the logic: truth tables

31

Based on slides © McGraw-Hill
Additional material © 2013 Farmer

Additional material © 2020 Narahari

Logic Design (Part 6)
Finite State Machines

32

17

33

Finite State Machines

33

34

Sequential Circuit Schematic & State Machine
•sequential circuit

• Output depends on input and stored information (state)
• Combines combinational logic with storage
• “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

1. combinational circuit computes output and next state
2. storage elements store current state

34

18

35

Schematic of a Sequential Circuit

Combinational
Logic Circuit

State variables
(memory)

D Flipflops

Inputs
Outputs

Next State Values

Current State Values

Clock

35

36

Finite State Machines
•The behavior of sequential circuits can be expressed using
characteristic tables or finite state machines (FSMs).

• FSMs consist of a set of nodes that hold the states of the machine
and a set of arcs that connect the states.

• FSM represented as a graph
• Elements of FSM:

• Finite Number of states
• Finite number of inputs and Finite number of outputs
• A specification of the state transitions
• A specification (Boolean function) of the outputs

•Moore and Mealy machines: two types of equivalent FSMs.
• They differ only in how they express the outputs of the machine.
• Moore machines place outputs on each node/state

§ Associate an output with each state

• Mealy machines present their outputs on the transitions.

36

19

37

States in a FSM
• The concept of state

• the state of a system is a “snapshot” of all relevant elements at a
moment in time.

• a given system will often have only a finite number of possible states.
• For many systems, we can define the rule which determines under

what conditions a system can move from one state to another.
§ So when do they change states ?

– Synchronized to clock (edge triggered)

• Determining the ‘states’
• Problem statement determines what information needs to be stored

(state is a summary)
• How many states does the machine need ?

37

38

FSM Design Process
• The first step is to model the behavior of the machine

• Based on problem statement
• Identify what the inputs are
• Identify the outputs
• Determine what needs to be stored to capture the “state” of the machine

• Represented as a graph – finite state diagram
• Nodes: States – a state stores summary of events (until current time)
• Edges: Transition from current state to next state

• Based on input and current state
• Computed by combinational logic

• Outputs: Using Moore machine, determine value of outputs at each state

38

20

39

Example: A Vending Machine
•Accept user input (coins), when total is at least 50 cents
dispense output

• For this example, we will not model the change to be returned, and
only care if the input is at least 50 cents

•Input valid coins:
• Q (25cents) D (10) or N (5)

• What should it keep track of ?
• current total
• Is it 50 cents or more ?

•When it reaches 50 or more:
• Generate output – dispense the candy/snacks

•States of the machine ?
• What should each state capture ?
• How many states ?

39

40

Finite State Machine for a Vending Machine

Start
Total=0

Total=5

Total=10

Total=15

Total=25

Final
Total>=50

Out=1

Input 5

Input 5

Input 5
Input 10

Input 10Input 10
Input 25

Input 25

40

21

41

Design a Counter: counts from 0 to 7

41

42

Finite State Machine Representation of Counter:
Counter to count from 0 to 7 (while switch is ON)

0

1

2

3

4

5

6

7

Reset

Bubbles represent all
possible “states” for the
machine
Arrows show movement from
one state to the next while switch
ON=1.
If ON=0, FSM goes to state 0

Transitions occur at pulse of
the clock

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1

42

22

43

Designing and implementing a FSM
1. Understand the problem statement and determine

inputs/outputs
2. Identify states and draw the state diagram
3. Next, derive the truth table (from state diagram)
4. From truth table, implement combinational circuit (boolean

function) for each of the next state values & outputs
• States stored in your N storage elements – Flip Flops

43

44

FSM Design & Implementation:
Sequential Circuit Design

• The state diagram describes the behavior of the machine
• Can determine number of storage elements (Flip Flops) that we need.
• States are numbered in binary

• To implement the circuit: derive truth table from state diagram
and then design the circuit (combinational logic)

44

23

45

Designing and implementing a FSM
1. Understand the problem statement and determine

inputs/outputs
2. Identify states and draw the state diagram

• Encode each state in binary using N bits
• State diagram will show transitions from state to state based on

value of inputs
3. Next, derive the truth table (from state diagram)

• “inputs” in truth table are N current state variables and the inputs
• These N state variables will need to be stored in N flips flops,
• Label the N state variables SN-1 SN-2 …S1S0

• “outputs” are the values of the state variables in the next state and
the output at each state -- common notation is S’ but confusion
with complement operator, so let’s use S*

4. From truth table, implement combinational circuit (boolean
function) for each of the next state values & outputs
• State variables are stored in your N storage elements

45

46

Finite State Machine Representation of Counter:
Counter to count from 0 to 7 (while switch is ON)

0

1

2

3

4

5

6

7

Reset

Bubbles represent all
possible “states” for the
machine

Arrows show movement from
one state to the next while switch
ON=1.
If ON=0, FSM goes to state 0

Transitions occur at pulse of
the clock

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1

46

24

47

Labelling States in Binary

000

001

010

011

100

101

110

111

Reset

We have 8 states, therefore we
need log2 8 =3 bits to encode
states in binary:

from 000 to 111

Each bit is called a state variable
& Stored in one D flip flop

we need 3 Flip flops to
store 3 bits S2 S1 S0

ON=1

ON=1

ON=1

ON=1

ON=1

ON=0

ON=1

47

48

Storage

•Each D flip flop stores one state bit.
•The number of storage elements (flip-flops) needed is determined
by the number of states
(and the representation of each state).

• Each bit can be 0 or 1 = 2 states
• N bits can represent 2N states

•Example: If FSM has 12 states, then circuit needs log2 12 = 4 storage
elements (i.e., flip flops).

• Fewer the states, less hardware needed
§ Concept of Minimization of States for a given FSM…

– …in Foundations (where else!!)

48

25

49

Designing and implementing a FSM
1. Understand the problem statement and determine

inputs/outputs
2. Identify states and draw the state diagram

• Encode each state in binary using N bits
• State diagram will show transitions from state to state based on value of

inputs

3. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs
• These N state variables will need to be stored in N flips flops,
• Label the N state variables SN-1 SN-2 …S1S0

• “outputs” are the values of the state variables in the next state and the
output at each state -- common notation is S’ but confusion with
complement operator, so let’s use S*

4. From truth table, implement combinational circuit (boolean
function) for each of the next state values & outputs
• State variables are stored in your N storage elements

49

50

Truth Table…and next state values (S*)
• Three bits to store state, state variables
S2 S1 S0

•If FSM is currently in state 011, and
ON=1, what is the next state ?

• next state= 100
• In terms of the state variables/flip flops:
• If ON=1, S2=1 S1=0 S0=0 then
• S2*=1 S1*=0 S0*=0
• Note: In this example the output (of
counter) is simply the values of the state

• In general you can have an output associate
with a state

50

26

51

Truth Table Representation of Counter

Input Present State Next State
On S2

(t)
S1
(t)

S0
(t)

S2*
(t+1)

S1*
(t+1)

S0*
(t+1)

1 0 0 0 0 0 1
1 0 0 1 0 1 0
1 0 1 0 0 1 1
1 0 1 1 1 0 0
1 1 0 0 1 0 1
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 0 0 0
0 X X X 0 0 0

51

52

Designing and implementing a FSM
1. Understand the problem statement and determine

inputs/outputs
2. Identify states and draw the state diagram

• Encode each state in binary using N bits
• State diagram will show transitions from state to state based on

value of inputs
3. Next, derive the truth table (from state diagram)

• These N state variables will need to be stored in N flips flops,
• Label the N state variables SN-1 SN-2 …S1S0

• “outputs” are the values of the state variables in the next state and
the output at each state -- common notation is S’ but confusion
with complement operator, so let’s use S*

4. From truth table, implement combinational circuit (boolean
function) for each of the next state values & outputs
• State variables are stored in your N storage elements

This part is no different from combinational circuit design!

52

27

53

Designing and implementing a FSM
1. Understand the problem statement and determine

inputs/outputs
2. Identify states and draw the state diagram

• Encode each state in binary using N bits
• State diagram will show transitions from state to state based on value of

inputs

3. Next, derive the truth table (from state diagram)
• These N state variables will need to be stored in N flips flops,
• Label the N state variables SN-1 SN-2 …S1S0

• “outputs” are the values of the state variables in the next state and the
output at each state -- common notation is S’ but confusion with
complement operator, so let’s use S*

4. From truth table, implement combinational circuit (boolean
function) for each of the next state values & outputs
• State variables are stored in your N storage elements

This part is no different from combinational circuit design!

53

54

Boolean functions for values of next state
•For each state variable, derive function that determines next state for that
variable:

•Note: next state value for each state variable denoted as S*
•Current states: S2 S1 S0

•Derivation here is only for case when On=1

•S2* = On.(S2’ S1S0 + S2S1’S0’ + S2S1’S0 + S2S1S0’)
• Optimized: S2*= On.(S2S1’ + S2S1S0’ + S2’S1S0)

•S1* = On.(S2’ S1’S0 + S2’S1S0’ + S2S1’S0 + S2S1S0’)
• Optimized: S1* =On. (S1S0’ + S1’S0)

•S0* = On.(S2’ S1’S0’ + S2’S1S0’ + S2S1’S0’ + S2S1S0’)
• Optimized: S0* = On.(S1S0’ + S2S1’S0 + S2’S1’S0’)

54

28

55

Circuit

On

D
Flip flop

D
Flip flop

S2

S1 S1*

S2*

S0*

S2*

S1*

Combinational circuit

Storage
elements

D
Flip flop S0*

Circuit
for S2*

Circuit
for S1*

Circuit
for S0*

S0

Inputs to
Combinational

Circuit &
Outputs

(current state)
from flip flops

Outputs from
Combinational
Circuit &
Input (next state)
to storage
circuit (flip flops)

55

56

Designing and implementing a FSM
1. Understand the problem statement and determine

inputs/outputs
2. Identify states and draw the state diagram

• Encode each state in binary using N bits

3. Next, derive the truth table (from state diagram)
• “outputs” are the values of the state variables in the next state and the

output at each state -- common notation is S’ but confusion with
complement operator, so let’s use S*

4. From truth table, implement combinational circuit (boolean
function) for each of the next state values & outputs
• State variables are stored in your N storage elements

56

29

57

Example 2: Blinking Traffic Sign: Start all lights
off – lights bulbs 1,2,3,4,5 off
•(from textbook) Design control circuitry for a blinking traffic sign (to
show “move right” message)

DANGER
MOVE RIGHT

1

2

3

4

5
Start
Lights

57

58

Step2: switch ‘on’ 2 lights – bulbs 1,2

DANGER
MOVE RIGHT

1

2

3

4

5

58

30

59

Step 3: Switch ‘on’ 4 lights – bulbs 1,2,3,4

DANGER
MOVE RIGHT

1

2

3

4

5

59

60

Step 4: switch ‘on’ 5 lights – 1,2,3,4,5

DANGER
MOVE RIGHT

1

2

3

4

5

60

31

61

Step 5- switch all ‘off’ – lights bulbs 1,2,3,4,5 off
And repeat the cycle

DANGER
MOVE RIGHT

1

2

3

4

5

61

62

Example: Traffic Sign
•A blinking traffic sign: How many lights/lightbulbs = 5
•How many states ?
•4 states

• No lights on
• 1 & 2 on
• 1, 2, 3, & 4 on
• 1, 2, 3, 4, & 5 on
• (repeat as long as switch is turned on)

•How many bits to represent the 4 states
•S1S0

• With S1S0 values: 00, 01, 10, 11

•How many ‘outputs’ (to control the 5 lights) = 5 ?
•If the sign is switched off then all lights turn off

62

32

63

Traffic Sign State Diagram

State bit S1 State bit S0

Switch on
Switch off

Outputs

Transition on each clock cycle.
63

64

Outputs
•Note we really have 3 groups of lights to be controlled = 3 control
lines X,Y,Z

• Group 1: Lights 1 and 2; controlled by Z
§ If Z=1 then Group 1 lights (1 and 2) are switched on

• Group 2: lights 3 & 4; controlled by Y
• Group 3: Light 5; controlled by X

•In this example, we associate each state with an output
• Depending on the current state, we switch on specific groups of lights

64

33

65

all on grp 1,2 on

all off grp 1 on

1

1

0

0

0

1

0,1

01

10

11

00

65

66

• When is group 1 on?
• in states 01, 10 and 11 - but only when the switch IN is on!

• Logic expressions for X,Y,Z
• Depends on S0 and S1 and Input is on

§ If Input is off then X,Y,Z are al 0

• can you come up with a logic expression for next state values of S0
and S1?
• Depends on current values of S0 and S1 and Input is on

§ Input off then both bits are set to 0 since next state is 00

• When do we switch to the next state?
• the two bits of S[1:0] are updated at every clock cycle

66

34

67

Traffic Sign Truth Tables

Outputs
(depend only on state: S1S0)

S1 S0 Z Y X
0 0 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 1 1 1

Lights 1 and 2
Lights 3 and 4

Light 5

Next State: S1’S0’
(depend on state and input)

In S1 S0 S1* S0*

0 X X 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

Switch

Whenever In=0, next state is 00.

67

68

Boolean functions for light control bits
• from truth table, consider all rows where outputs =1

• Z = ((NOT S1)S0 + S1 (NOT S0) + S1S0).In

•Y = (S1S0 + S1 (NOT S0)).In

•X = (S1S0).In

•S1* = (In. S1.S0’) + (In. S1’. S0)
•S0* = (In. S1’.S0’) + (In. S1 .S0’)

68

35

69

Traffic Sign Logic

D
flipflop

69

70

Summary of Digital Logic
•Combinational logic

• Basic gates
• Combinational devices: adders, decoders, multiplexers,…

•Sequential logic
• Storage element…Flip flop
• Theory behind design of finite state machines

§ They act like controllers of a circuit

•Sequential logic devices
• Memory, ROM, RAM, Registers

So, what is the purpose of all this ?.........

70

36

71

Next…Our Agenda: Putting it all together

• The goal: Turn a theoretical device - Turing’s Universal
Computational Machine - into an actual computer ...

• … interacting with data and instructions from the outside world, and
producing output data.

• Smart building blocks:
• We have at our disposal a powerful collection of combinational and

sequential logic devices.

• Now we need a master plan ...
• We need to start with defining the model of a computer architecture

§ Von Neuman model

• And we use our building blocks to build a circuit that can perform a
sequence of arithmetic operations, i.e., build a simple CPU.

71

72

From Logic to Processor Design

•Combinational Logic
• Decoders -- convert instructions into control signals
• Multiplexers -- select inputs and outputs
• ALU (Arithmetic and Logic Unit) -- operations on data

•Sequential Logic
• State machine -- coordinate control signals and data movement
• Registers and latches -- storage elements

72

37

73

Next: Putting it all together
• The goal:

• Turn a theoretical device - Turing’s Universal Computational Machine -
into an actual computer ...

• … interacting with data and instructions from the outside world, and
producing output data.

• Smart building blocks:
• We have at our disposal a powerful collection of combinational and

sequential logic devices.

• Now we need a master plan ...
• We need to start with defining the model of a computer architecture

§ Von Neuman model

73

74

Attaching Clock to D-Latch
• Attach CLOCK to the WE on D-Latch
• We create “windows” of time that we can store data into latch

§ When the CLOCK is “HIGH” – D-latch is open
§ When the CLOCK is “LOW” – D-latch is closed

• D=Q while CLOCK is High
• We have to prepare what we wish to store, right before latch closes

CLOCK

D

Q

open openclosed

time®

D

WE clock

Oops…changes in input while clock=High cascade to output Q
- Q can change multiple times during clock cycle: not synchronized with clock

74

