
1

Code Optimization
Techniques

1

Code optimization for performance
•A quick look at some techniques that can improve the performance
of your code

•Rewrite code to minimize processor cycles
• But do not mess up the correctness!
• Reduce number of instructions executed
• Reduce the “complexity” of instructions

o In real processors, different arithmetic operations can take different
times

•Locality
• Will improve memory performance

2

2

Recall CPU time model
CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU = IC * CPI * Clk

3

Summary: Memory Access time optimization
•If each access to memory leads to a cache hit then time to
fetch from memory is one cycle

• Program performance is good!

•If each access to memory leads to a cache miss then time to
fetch from memory is much larger than 1 cycle

• Program performance is bad!

•Design Goal:
How to arrange data/instructions so that we have as few
cache misses as possible.

4

3

Exercise: Improve Cache Hit Rate by
rewriting the code

• Assume array A[16]
• Assume cache block size = 4
•Assume total cache size= 2 blocks

•Assume

i=0;
while (i<16){

A[i]= A[i] *10;
i= i+4; }

i=1;
while (i<16){

A[i] = A[i]*20;
i=i+4; }

i=2;
while (i<16){

A[i]=A[i]*30;
i= i+4;}

i=3;
while (i<16){

A[i]= A[i]*40;
i= i+4;}

…
5

Example

Cache

Cache block 0
Cache block 1

4 Cache blocks
4 bytes in each block

Mem Block x maps into
cache block (y mod 2)

Memory
(0,1,2,3)
(4,5,6,7)

(8,9,10,11)
(12,13,14,15)

Addresses
In each block

Block 0

Block 1
Block 2

Block 3

i=0;
while (i<16){

A[i]= A[i] *10;
i= i+4; }

i=1;
while (i<16){

A[i] = A[i]*20;
i=i+4; }

i=2;
while (i<16){

A[i]=A[i]*30;
i= i+4;}

i=3;
while (i<16){

A[i]= A[i]*40;
i= i+4;}

…

Cache accesses:
Miss
Miss
Miss
Miss
Miss

….

6

4

Code with Improved locality
i=0;
while (i<16){

A[i]= A[i] *10;
A[i+1] = A[i+1]*20;
A[i+2] = A[i+2]*30;
A[i+3] = A[i+3]*40

Cache accesses:
Miss
Hit
Hit
Hit

Miss
Hit
Hit
Hit

Miss
….

7

Reducing CPU Time:
Who can ‘change’ each parameter

• CPU time = IC * CPI * Clk
• Clock: completely under HW control
• IC: programmer and compiler
• CPI: compiler and HW
•….so what does a compiler do?

8

5

Compiler Tasks
• 1. Code Translation

• Source language ® target language
FORTRAN ® C
C ® MIPS, x86, PowerPC or Alpha machine code
MIPS binary ® x86 binary

• 2. Code Optimization
• Code runs faster
• Match dynamic code behavior to static machine structure

9

Compiler Structure

Front End Optimizer Back End

Machine independent Machine dependent

high-level
source
code

IR machine
code

Dependence
Analyzer

(IR= intermediate representation)

IR

10

6

Compiler Front End tasks
• Lexical Analysis

• Misspelling an identifier, keyword, or operator
o e.g. lex

done by a finite state machine (i.e., deterministic finite automata)!

• Syntax Analysis
• Grammar errors, such as mismatched parentheses
• Define syntax using Context Free Grammar…then build parser

e.g. yacc

• Semantic Analysis
• Type checking, check formal and actual arguments to function match, etc.

• code generation…you’ve been doing this for C to LC3!!
• to target ISA or intermediate code, llvm-code

11

Code Optimization
• After front end analysis an executable program P

• P has some performance T(P)
• T(P) = IC*CPI* Clock

• Goal: Improve T(P)
• Reduce time
• How ? Reduce CPI and/or IC

• Rewrite/transform P to equivalent program Q such that
1. T(Q) < T(P) and
2. Q and P are equivalent, i.e, do exactly the same thing

o For all inputs, Q and P produce the same result and compute the same
function

12

7

Formal Model for Code Optimization ?
•Is it a hack job or is there a formal model underlying the various
transformations that can help with designing a tool to optimize
code ?

• Need to make sure that transformed code is correct and does not change
semantics of the original program.

•Power of abstraction…..
•Graph theory: model program as a graph (Program dependence
graph)

• Model data and control dependencies
• Code transformation = graph transformation

13

The Program Dependence Graph

• How to represent control and data flow of a program ?
• The Program Dependence Graph (PDG) is the intermediate

(abstract) representation of a program designed for use in
optimizations

• It consists of two important graphs:
• Control Dependence Graph captures control flow and control dependence
• Data Dependence Graph captures data dependences

• Analogous to a flow-chart of the program
• Formal model for flow charts!

14

8

Definition: Control Flow Graph

A control flow graph CFG = (Nc ; Ec ; Tc) consists of

• Nc, a set of nodes. A node represents a straight-line
sequence of operations with no intervening control flow
i.e. a basic block.

• Ec Í Nc x Nc x Labels, a set of labeled edges.

• Example: the code below has two basic blocks
ADD R0, R0, #0
BRn here1
LDR R1, R0, #0
ADD R2, R1, R2
BRzp here2

15

Control Flow Graph

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

16

9

Data Dependence Graph
• Within each basic block capture the data dependencies between
instructions

• follow the data in the registers
• Value computed in a register is needed by an instruction in the future
• Ex:

o Value computed by LDR is needed by next instruction
o But no dependence between AND and the other instructions

• Can capture these dependencies using a graph
• Nodes are instructions and edges dependencies

• Data dependencies important in
• Scheduling instructions
• Parallelizing the code

LDR R1, R0, #0

ADD R2, R1, R2
AND R3, R3, #4
BRzp here2

17

Program behaviour ?
•Model as program dependence graph!
•What is a correct execution ?

• Execution will only follow valid paths in the program dependence graph!
o IF code is written correctly, then force the program to only follow

paths in the dependence graph!

•connection to Software security/correctness
• Only execute along paths in the graph = program cannot execute any

malicious code

18

10

Formal Definition/Model: Code Optimization

• First goal: make sure that transformed code is correct and does not
change semantics of the original program.

•model program as a graph (Program dependence graph)
• Model data and control dependencies

•Any transformation should give us a homomorphic graph
• Recall concept of Isomorphism/Homomorphism Discrete Structures

courses !!!

•Bad news: checking graph isomorphism is NP-complete !
• Therefore … ???

19

Compiler optimizations
•Use ‘heuristics’ to solve the difficult problem
•All ‘useful’ compilers have code optimizers built into them

• Optimize time….
• other metrics: power ? Code size?

o Why ?

•Machine dependent optimizations
• Need to know something about the processor details before we can

optimize

•Machine independent optimizations
• These are independent of processor specifics
• These are what we will cover

20

11

Machine Dependent Optimizations

•Register Allocation

•Instruction Scheduling

•Peephole Optimizations

These need some knowledge of the processor

21

Instruction Scheduling

•Given a source program P, schedule the instructions so as to
minimize the overall execution time on the functional units in
the target machine

• This is where processors with parallelism introduce complexity into the
scheduling process

• Schedule parallel instructions

• the instruction flow (data dependencies) are again modeled as
a graph !

•Finding a schedule with minimum execution time is an NP-
complete problem

• Need fast and effective heuristics
• You will cover schedulers in Operating Systems course

23

12

Register Allocation
•Storing and accessing variables from registers is much
faster than accessing data from memory.

• Variables ought to be stored in registers

•It is useful to store variables as long as possible, once they
are loaded into registers

•Registers are bounded in number
• “register-sharing” is needed over time.
• Some variables have to be ‘flushed’ to memory
• Reading from memory takes longer

• how important is Register allocation to performance?
• efficient register allocators improved performance 25%
• Poor allocation means repeatedly reading variables from memory

24

Register Allocation
{ …

i=10;
x= y +i;
while (i<100) {

a = a*100
b = b + 100
i++;

}
•Suppose you have 3 registers available…and 5 variables
•should you place a and b into same register ?
•Can you place x and a into same register ?

Each variable gets placed
into a register, ex: LDR R0, R5, #-3
puts local var with offset -3 into R0

25

13

Register Allocation
{ …

i=10;
x= y +i;
while (i<100){

a = a*100
b = b +100
i++;

}
•“live range” LR(j) for each variable j – where is it accessed
•Do live ranges of x and a “interfere” : LR(x) & LR(a) = 0?
•Do live ranges of a and b interfere ? : LR(a) & LR(b) = 0?
•If ranges interfere, then assign to different registers

LR(a)

LR(i)

LR(x)

LR(b)

LR(y)

26

Register Allocation: Problem
Formulation and Solution

• Determine live ranges for each variable, and determine
conflicts/interference between variables/live ranges

• Using dataflow analysis compute live ranges for each variable
•How do we model the register allocation problem?

• Power of abstraction!!
•Formulate the problem of assigning variables to registers as a graph
problem: The Graph coloring problem !

o Nodes in graph = number of variables (live ranges)
o Edges in graph = edge between x,y if live ranges x,y interfere
o Can we color the graph with K colors ?
o Number of colors = Number of registers!

• Use application domain (Instruction execution) to define the priority function

27

14

Example:
• Graph theory & CS – it is every &#@&@ place!

• My curriculum advice (that nobody takes…except 3): take a graph theory
course!

i
x b

ay

3 registers = 3 colors
x,and b assigned to same register since no edge
y and a assigned to same register since no edge
i cannot be assigned to same register as any of the others

28

Machine Dependent Optimizations
•Need thorough knowledge of the architecture AND algorithms
•New architectures introduce new challenges…

• Multi-core, Multi-threaded, Embedded (need to optimize for power
consumption), Security to enforce software security)

• Compiling for FPGA co-processors to accelerate (ex: AWS, Microsoft)

• Compiling for Security – leverage FPGAs & extra HW to place
verification and encryption circuits

• Compiling for power optimization
• control memory power using compiler….layout the data so we can switch

off memory modules

•Machine dependent optimizations done by a compiler writer….
• Huge demand in industry….23 requests (>150K) in 2022 from alumni
• But few CS students want to study this stuff L …and, this is not our focus

for now!

My Research Areas

29

15

Our focus in this course: Machine
Independent Optimizations
•As SW developers, these should be a ‘default’ when you write
code…

• THIS is what separates you from those who take a single programming
course and claim they know CS!!

•How does it work: a large ‘menu’ of optimization techniques
• Some dependent on general architecture

o Ex: Pipelined processors and loop unrolling
• We cover a small sample that works on all processors

30

Some Machine-Independent Optimizations
• Some easy ones: Dataflow Analysis and Optimizations

• Constant folding, Copy propagation etc.
• Elimination of common subexpression
• Dead code elimination

• Code motion
• Strength reduction
• Function/Procedure inlining
• Improving memory locality

31

16

Code-Optimizing Transformations
• Constant folding

(1 + 2) Þ 3
(100 > 0) Þ true

This saves one instruction – reduce IC

32

Code-Optimizing Transformations
• Copy propagation

x = b + c x = b + c
z = y * x z = y * (b + c)Þ

Why does this make a difference: Recall how code is generated..
(b+c) is stored into a temp register R0 and then STR R0, R5, #-2 to store local var x.
Code generated for the 2nd statement z = y*x is:

LDR R0, R5, #-2 ; Load x into R0
LDR R1, R5, #-3 ; load y into R1
MUL R2, R0, R1 ; multiply x,y and store into R2
Replace above with
LDR R1, R5, #-3 ; load y into R1
MUL R2, R0,R1 ; multiply with value (b+c) stored in R0

This saves one memory access..reduces IC and CPI

33

17

Code-Optimizing Transformations
• Common subexpression – reduce instruction count

x = b * c + 4 t = b * c
z = b * c - 1 x = t + 4

z = t – 1

• 2 mult, 1 add, 1 sub replaced by
• 1 mult, 1 add, 1 sub

• Reduces IC

Þ

34

Code-Optimizing Transformations
• Dead code elimination

x = 1
x = b + c or if x is not referred to at all

Saves one instruction…reduce IC

35

18

Code Optimization Example
x = 1
y = a * b + 3
z = a * b + x + z + 2
x = 3

propagation
x = 1
y = a * b + 3
z = a * b + 1 + z + 2
x = 3

constant
folding

x = 1
y = a * b + 3
z = a * b + 3 + z
x = 3

dead code
elimination

y = a * b + 3
z = a * b + 3 + z
x = 3

common
subexpression

t = a * b + 3
y = t
z = t + z
x = 3

Original: 2 Mult, 4 Add, 7 Read/Write Mem
New: 1 Mult, 2 Add, 5 Read/Write

36

Code Motion
• Code Motion

• Reduce frequency with which computation performed
o If it will always produce same result
o Especially moving code out of loop

• Move code between blocks
• eg. move loop invariant computations outside of loops

• What does this reduce ?
• Number of times x/y is computed…reduce IC

t = x / y
while (i < 100) { while (i < 100) {
*p = x / y + i *p = t + i
i = i + 1 i = i + 1
} }

37

19

• Replace costly operation with simpler one
• Shift, add instead of multiply or divide

16*x --> x << 4
o Utility is machine dependent
o Depends on cost of multiply or divide instruction
o On Pentium x86, integer multiply only requires 4 CPU cycles

• Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
a[ni + j] = b[j];

ni = ni + n;
}

Strength Reduction

39

Function Inlining
•What happens on a function call ?

• How are function calls implemented on the machine ?
• Is function call = one subroutine call ?

•Function call in C = number of instructions in machine code
• Create activation records, allocate memory
• Manipulate stack and frame pointers

•What happens if we replace function call with body of function
• i.e., Inline the function

41

20

Function Call/Return
• Instructions to Push arguments to stack
• Instructions to Push frame pointer, return addr.
•Execute instructions of function
• Instructions to Pop return value, reset frame pointer, pop return address
•The bookkeeping instructions are essentially an “overhead”

• They do not do the work of the function
•What happens if we replace function call with body of function ?

• Inline the function
• Remove the function call and return overhead instructions
• …reduce IC

42

Function Inlining

… int myfunc(int m,n)
x= myfunc(i,j) {
… return(m+n);}

After inlining:
…
x = m+n
…..

• Improves performance
• Removes bookkeeping instructions

• but tradeoff with code readability
• and code size

43

21

Code Optimization
Techniques: Part 2

44

Machine-Independent Code Optimizations
• Dataflow Analysis and Optimizations

• Constant folding, Copy propagation etc.
• Elimination of common subexpression
• Dead code elimination

• Code motion
• Strength reduction
• Function/Procedure inlining
• Improving memory locality

• Example/Exercise: An example is posted for you to try rewriting
code

45

22

Locality

• Recall Principle of Locality:
• Programs tend to reuse data and instructions near those they have

used recently, or that were recently referenced themselves.
• Temporal locality: Recently referenced items are likely to be

referenced in the near future.
• Spatial locality: Items with nearby addresses tend to be referenced

close together in time.

• Being able to look at code and get a qualitative sense of its
locality is a key skill for a professional software developer.

46

Locality and performance
•Recall: Memory = Cache + Main memory

• Cache contains small number of bytes
•Recall: cache is arranged as a set of blocks

• Can only fetch block at a time
•ExampleAssume each cache block has 4 words

• If you fetch a block with addresses {0,1,2,3}
• If four successive instructions use locations 0,1,2,3 then we only have one

cache miss (first time to fetch block into cache)
• If four successive instructions use locations 0,4,8,12 then each time we

have to fetch a new cache block
o Each memory access is an access to main memory

•Goal: have locality in memory accesses

47

23

Exercise: Improve Cache Hit Rate by
rewriting the code

• Assume array A[16]
• Assume cache block size = 4
•Assume total cache size= 2 blocks

•Array access pattern:
A[0], A[4], A[8], A[12], A[1], A[5], A[9],…

i=0;
while (i<16){

A[i]= A[i] *10;
i= i+4; }

i=1;
while (i<16){

A[i] = A[i]*20;
i=i+4; }

i=2;
while (i<16){

A[i]=A[i]*30;
i= i+4;}

i=3;
while (i<16){

A[i]= A[i]*40;
i= i+4;}

…
48

Example

Cache

Cache block 0
Cache block 1

2 Cache blocks, 4 bytes in each block
Mem Block x maps into cache block (y mod 2)Memory

(0,1,2,3)
(4,5,6,7)

(8,9,10,11)
(12,13,14,15)

Addresses
In each block

Block 0

Block 1
Block 2

Block 3

i=0;
while (i<16){

A[i]= A[i] *10;
i= i+4; }

i=1;
while (i<16){

A[i] = A[i]*20;
i=i+4; }

i=2;
while (i<16){

A[i]=A[i]*30;
i= i+4;}

i=3;
while (i<16){

A[i]= A[i]*40;
i= i+4;}

…

Cache accesses:
Miss
Miss
Miss
Miss
Miss

….

0,1,2,3

4,5,6,7

Access pattern:
0,4,8,12,1,5,9,13,2,…

49

24

Code with Improved locality
i=0;
while (i<16){

A[i]= A[i] *10;
A[i+1] = A[i+1]*20;
A[i+2] = A[i+2]*30;
A[i+3] = A[i+3]*40 ; }

Cache accesses:
Miss
Hit
Hit
Hit

Miss
Hit
Hit
Hit

Miss
….

Array access pattern:
A[0], A[1], A[2], A[3], A[4], A[5], A[6],A[7],….

50

Arrays and Memory organization… . .
•Let’s use array data structures to guide our discussions
•Recall: accesses to cache better than accesses to main
memory/disk

•Recall: Multidimensional Arrays

51

25

Declaration
int ia[3][4];

Type
Address

Number
of Rows

Number
of Columns

Declaration at compile time
i.e. size must be known

52

How does a two dimensional array work?

How would you store it?

0 1 2 3

0

1

2

53

26

How would you store it?0 1 2 3
0
1
2

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

Column 0 Column 1 Column 2 Column 3

Column Major Order

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

Row 0 Row 2Row 1

Row Major Order

54

How would you store it?0 1 2 3
0
1
2

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

Column 0 Column 1 Column 2 Column 3

Column Major Order

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

Row 0 Row 2Row 1

Row Major Order

C stores in row major order

55

27

Question to ask: Locality of Access
•How are elements in the array accessed in your program ?

• Row major or column major or other ?
• How would you iterate over the 2-D array to maintain locality ?

56

Locality Example
• Question: Does this function have good locality?

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum

}
0 1 2 3

0

1

2

Access pattern
Column-major

57

28

Locality Example
• Question: Does this function have good locality?
int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum

} 0 1 2 3

0

1

2
Access pattern

Row-major

58

Improving Memory Access Times
(Cache Performance) by Compiler
Optimizations

• McFarling [1989] improve perf. By rewriting the software
• Instructions

• Reorder procedures in memory so as to reduce cache misses
• Code Profiling to look at cache misses(using tools they developed)

• Data
• Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays
• Loop Interchange: change nesting of loops to access data in order stored in

memory
• Loop Fusion: Combine 2 independent loops that have same looping and

some variables overlap
• Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down whole columns or rows

59

29

Compiler optimizations – merging
arrays

• This works by improving spatial locality
• For example, some programs may reference multiple arrays

of the same size at the same time
• Could be bad – not enough locality

o Accesses may interfere with one another in the cache – conflict misses

• A solution: Generate a single, compound array/struct…

60

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

61

30

Compiler optimizations – loop
interchange

• Some programs have nested loops that access memory in non-
sequential order
• Simply changing the order of the loops may make them access the data in

sequential order…

• What’s an example of this?
• Recall: C stores 2-D arrays in row-major format

62

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

63

31

Loop Interchange Example

/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding
through memory every 100 words;
improved spatial locality

64

Compiler optimizations – loop fusion
• This one’s pretty obvious once you hear what it is…
• Seeks to take advantage of:

• Programs that have separate sections of code that access the same arrays
in different loops
o Especially when the loops use common data

• The idea is to “fuse” the loops into one common loop

• What’s the target of this optimization?
• Locality – reduce memory access times
• IC – by reducing number of branches

o Important in pipelined processors

65

32

Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

Move inside
first loop

66

Loop Fusion Example

/* After */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per
access; improve spatial locality & temporal
locality

67

33

And last (but most important?): general concept
of Memory Blocking.

•Can you keep locality in all memory operations
•This is probably the most “famous” of compiler
optimizations to improve cache performance

•common concept: blocking
• Rewrite code to process blocks of data at a time
• Size of block = ???? Size of cache block!!

68

Compiler optimizations – blocking
• Tries to reduce misses by improving temporal locality and spatial

locality
• To get a handle on this, you have to work through code on your

own
• this is used mainly with arrays!
• Simplest case??

• Row-major access

69

34

70

Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory; note column major access!}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

Good locality in access to matrix A; poor locality in access to B

70

Blocked (Tiled) Matrix Multiply
Consider A,B,C to be N-by-N matrices of b-by-b subblocks where
b= N/m is called the block size

for i = 1 to N increment by block size
for j = 1 to N increment by block size

{read block of C(i,j) into fast memory}
for k = 1 to N increment by block size

{read block of A(i,k) into fast memory}
{read block of B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Work these details out….need it for the project!

71

35

Code Optimization and Compilers
•Modern compilers provide a menu of code optimization features

• Inlining, strength reduction, register allocation, loop optimizations, etc.

•Some provide default optimization levels
• Example: gcc -03 test.c

•Bottom Line: Everyone wants to run optimized code
• It’s about being smart with your solution!

• Have we seen everything there is to code optimization?....not by a
long shot !!

• Lots and lots more optimization techniques
o The “cooler” ones need architecture knowledge

72

Example of Code Optimization:
(Final) Project 6

•Topic: Code Performance Optimization
• Given code for Image operations, rewrite the code to make it run

faster.
o Use only techniques covered in class.
o No collaboration….and no posting on Chegg.com

•Description will be posted today and code on last day of classes
and due official final exam date: Dec. 15th midnight.

• Should take you 10-12 hours to complete
•Requires:

• Code rewriting & Report writing: summarize your experiments, explain
why the code ran faster (or slower).

•Very Important: Grade will depend on your analysis – simply
turning in code (with documentation) that runs faster but no
report will result in 0 points!

73

