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Code Optimization 
Techniques
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Code optimization for performance
•A quick look at some techniques that can improve the performance 
of your code

•Rewrite code to minimize processor cycles
• But do not mess up the correctness!
• Reduce number of instructions executed
• Reduce the “complexity” of instructions

o In real processors, different arithmetic operations can take different 
times

•Locality
• Will improve memory performance
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Recall  CPU time model
CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds

Program Program          Instruction       Cycle

CPU = IC * CPI * Clk
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Summary: Memory Access time optimization
•If each access to memory leads to a cache hit then time to 
fetch from memory is one cycle

• Program performance is good!

•If each access to memory leads to a cache miss then time to 
fetch from memory is much larger than 1 cycle

• Program performance is bad!

•Design Goal:
How to arrange data/instructions so that we have as few 
cache misses as possible.
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Exercise: Improve Cache Hit Rate by 
rewriting the code

• Assume array A[16]
• Assume cache block size = 4
•Assume total cache size= 2 blocks

•Assume 

i=0;
while (i<16){

A[i]= A[i] *10;
i= i+4; }

i=1;
while (i<16){

A[i] = A[i]*20;
i=i+4; }

i=2;
while (i<16){

A[i]=A[i]*30;
i= i+4;}

i=3;
while (i<16){

A[i]= A[i]*40;
i= i+4;}

…
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Example

Cache

Cache block 0
Cache block 1

4 Cache blocks
4 bytes in each block

Mem Block x maps into 
cache block (y mod 2)

Memory
(0,1,2,3)
(4,5,6,7)

(8,9,10,11)
(12,13,14,15)

Addresses
In each block

Block 0

Block 1
Block 2

Block 3

i=0;
while (i<16){

A[i]= A[i] *10;
i= i+4; }

i=1;
while (i<16){

A[i] = A[i]*20;
i=i+4; }

i=2;
while (i<16){

A[i]=A[i]*30;
i= i+4;}

i=3;
while (i<16){

A[i]= A[i]*40;
i= i+4;}

…

Cache accesses:
Miss
Miss 
Miss
Miss
Miss

….
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Code with Improved locality
i=0;
while (i<16){

A[i]= A[i] *10;
A[i+1] = A[i+1]*20;
A[i+2] = A[i+2]*30;
A[i+3] = A[i+3]*40

Cache accesses:
Miss
Hit 
Hit
Hit

Miss
Hit
Hit 
Hit

Miss
….
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Reducing CPU Time:
Who can ‘change’ each parameter

• CPU time = IC * CPI * Clk
• Clock: completely under HW control
• IC: programmer and compiler
• CPI: compiler and HW
•….so what does a compiler do?
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Compiler Tasks
• 1. Code Translation

• Source language ® target language
FORTRAN ® C
C ® MIPS, x86, PowerPC or Alpha machine code
MIPS binary ® x86 binary

• 2. Code Optimization
• Code runs faster
• Match dynamic code behavior to static machine structure

9

Compiler Structure

Front End Optimizer Back End

Machine  independent Machine dependent

high-level
source
code

IR machine
code

Dependence
Analyzer

(IR= intermediate representation)

IR
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Compiler Front End tasks
• Lexical Analysis

• Misspelling an identifier, keyword, or operator
o e.g. lex

done by a finite state machine (i.e., deterministic finite automata)!

• Syntax Analysis
• Grammar errors, such as mismatched parentheses
• Define syntax using Context Free Grammar…then build parser

e.g. yacc

• Semantic Analysis
• Type checking, check formal and actual arguments to function match, etc.

• code generation…you’ve been doing this for C to LC3!!
• to target ISA or intermediate code, llvm-code
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Code Optimization
• After front end analysis an executable program P

• P has some performance T(P )
• T(P) = IC*CPI* Clock 

• Goal: Improve T(P)
• Reduce time
• How ? Reduce CPI and/or IC

• Rewrite/transform P to equivalent program Q such that
1. T(Q) < T(P) and
2. Q and P are equivalent, i.e, do exactly the same thing

o For all inputs, Q and P produce the same result and compute the same 
function
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Formal Model for Code Optimization ?
•Is it a hack job or is there a formal model underlying the various 
transformations that can help with designing a tool to optimize 
code ?

• Need to make sure that transformed code is correct and does not change 
semantics of the original program.

•Power of abstraction…..
•Graph theory: model program as a graph (Program dependence 
graph)

• Model data and control dependencies
• Code transformation = graph transformation
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The Program Dependence Graph

• How to represent control and data flow of a program ?
• The Program Dependence Graph (PDG) is the intermediate 

(abstract) representation of a program designed for use in 
optimizations

• It consists of two important graphs:
• Control Dependence Graph captures control flow and control dependence
• Data Dependence Graph captures data dependences

• Analogous to a flow-chart of the program
• Formal model for flow charts!

14
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Definition: Control Flow Graph

A control flow graph CFG = ( Nc ; Ec ; Tc ) consists of

• Nc, a set of nodes. A node represents a straight-line  
sequence of operations with no intervening control flow 
i.e. a basic block.

• Ec Í Nc x Nc x Labels, a set of labeled edges.

• Example: the code below has two basic blocks
ADD R0, R0, #0
BRn here1
LDR R1, R0, #0
ADD R2, R1, R2
BRzp here2

15

Control Flow Graph

BB 1

BB 2

BB 3 BB 4

BB 5

             main:
           addi r2, r0, A   
           addi r3, r0, B   
           addi r4, r0, C      BB 1
           addi r5, r0, N   
           add  r10,r0, r0  
           bge  r10,r5, end 
     loop:
           lw   r20, 0(r2)  
           lw   r21, 0(r3)     BB 2
           bge  r20,r21,T1  
           sw   r21, 0(r4)     BB 3
           b    T2              
     T1:                    
           sw   r20, 0(r4)     BB 4
     T2:
           addi r10,r10,1   
           addi r2, r2, 4   
           addi r3, r3, 4      BB 5
           addi r4, r4, 4   
           blt  r10,r5, loop
     end: 

16
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Data Dependence Graph
• Within each basic block capture the data dependencies between 
instructions

• follow the data in the registers
• Value computed in a register is needed by an instruction in the future
• Ex: 

o Value computed by LDR is needed by next instruction
o But no dependence between AND and the other instructions

• Can capture these dependencies using a graph
• Nodes are instructions and edges dependencies

• Data dependencies important in
• Scheduling instructions
• Parallelizing the code

LDR R1, R0, #0

ADD R2, R1, R2
AND R3, R3, #4
BRzp here2
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Program behaviour ?
•Model as program dependence graph!
•What is a correct execution ?

• Execution will only follow valid paths in the program dependence graph!
o IF code is written correctly, then force the program to only follow 

paths in the dependence graph!

•connection to Software security/correctness
• Only execute along paths in the graph = program cannot execute any 

malicious code

18
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Formal Definition/Model:  Code Optimization

• First goal: make sure that transformed code is correct and does not 
change semantics of the original program.

•model program as a graph (Program dependence graph)
• Model data and control dependencies

•Any transformation should give us a homomorphic graph
• Recall concept of Isomorphism/Homomorphism Discrete Structures 

courses !!!

•Bad news: checking graph isomorphism is NP-complete !
• Therefore … ???

19

Compiler optimizations
•Use ‘heuristics’ to solve the difficult problem
•All ‘useful’ compilers have code optimizers built into them

• Optimize time….
• other metrics: power ? Code size?

o Why ?

•Machine dependent optimizations
• Need to know something about the processor details before we can 

optimize

•Machine independent optimizations
• These are independent of processor specifics
• These are what we will cover

20
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Machine Dependent Optimizations

•Register Allocation

•Instruction Scheduling

•Peephole Optimizations

These need some knowledge of the processor

21

Instruction Scheduling

•Given a source program P, schedule the instructions so as to 
minimize the overall execution time on the functional units in 
the target machine

• This is where processors with parallelism introduce complexity into the 
scheduling process

• Schedule parallel instructions

• the instruction flow (data dependencies) are again modeled as 
a graph ! 

•Finding a schedule with minimum execution time is an NP-
complete problem

• Need fast and effective heuristics
• You will cover schedulers in Operating Systems course
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Register Allocation
•Storing and accessing variables from registers is much 
faster than accessing data from memory.

• Variables ought to be stored in registers

•It is useful to store variables as long as possible, once they 
are loaded into registers

•Registers are bounded in number
• “register-sharing” is needed over time.
• Some variables have to be ‘flushed’ to memory
• Reading from memory takes longer

• how important is Register allocation to performance?
• efficient register allocators improved performance 25%
• Poor allocation means repeatedly reading variables from memory

24

Register Allocation
{ …

i=10;
x= y +i;
while (i<100) {

a = a*100
b = b + 100
i++;

}
•Suppose you have 3 registers available…and 5 variables
•should you place a and b into same register ?
•Can you place x and a into same register ?

Each variable gets placed
into a register, ex: LDR R0, R5, #-3
puts local var with offset -3 into R0

25



13

Register Allocation
{ …

i=10;
x= y +i;
while (i<100){

a = a*100
b = b +100
i++;

}
•“live range” LR(j) for each variable j – where is it accessed
•Do live ranges of x and a “interfere” : LR(x)  & LR(a) = 0?
•Do live ranges of a and b interfere ? : LR(a) &  LR(b) = 0?
•If ranges interfere, then assign to different registers 

LR(a)

LR(i)

LR(x)

LR(b)

LR(y)

26

Register Allocation: Problem 
Formulation and Solution

• Determine live ranges for each variable, and determine 
conflicts/interference between variables/live ranges

• Using dataflow analysis compute live ranges for each variable
•How do we model the register allocation problem?

• Power of abstraction!!
•Formulate the problem of assigning variables to registers as a graph 
problem: The Graph coloring problem !

o Nodes in graph = number of variables (live ranges)
o Edges in graph = edge between x,y if live ranges x,y interfere
o Can we color the graph with K colors ?
o Number of colors = Number of registers!

• Use application domain (Instruction execution) to define the priority function

27
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Example:
• Graph theory & CS – it is every &#@&@ place!

• My curriculum advice (that nobody takes…except 3): take a graph theory 
course!

i
x b

ay

3 registers = 3 colors
x,and b assigned to same register since no edge
y and a assigned to same register since no edge
i cannot be assigned to same register as any of the others

28

Machine Dependent Optimizations
•Need thorough knowledge of the architecture AND algorithms
•New architectures introduce new challenges…

• Multi-core, Multi-threaded, Embedded (need to optimize for power 
consumption), Security to enforce software security)

• Compiling for FPGA co-processors to accelerate (ex: AWS, Microsoft)

• Compiling for Security – leverage FPGAs & extra HW to place 
verification and encryption circuits

• Compiling for power optimization 
• control memory power using compiler….layout the data so we can switch 

off memory modules

•Machine dependent optimizations done by a compiler writer….
• Huge demand in industry….23 requests (>150K) in 2022 from alumni
• But few CS students want to study this stuff L …and, this is not our focus 

for now!

My Research Areas

29



15

Our focus in this course: Machine 
Independent Optimizations
•As SW developers, these should be a ‘default’ when you write 
code…

• THIS is what separates you from those who take a single programming 
course and claim they know CS!!

•How does it work: a large ‘menu’ of optimization techniques
• Some dependent on general architecture

o Ex: Pipelined processors and loop unrolling
• We cover a small sample that works on all processors

30

Some Machine-Independent Optimizations
• Some easy ones: Dataflow Analysis and Optimizations

• Constant folding, Copy propagation etc.
• Elimination of common subexpression
• Dead code elimination

• Code motion
• Strength reduction
• Function/Procedure inlining
• Improving memory locality

31
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Code-Optimizing Transformations
• Constant folding

(1 + 2)   Þ 3
(100 > 0) Þ true

This saves one instruction – reduce IC

32

Code-Optimizing Transformations
• Copy propagation

x  =  b + c x  = b + c
z  =  y * x      z  = y * (b + c)Þ

Why does this make a difference: Recall how code is generated..
(b+c) is stored into a temp register R0 and then STR R0, R5, #-2 to store local var x. 
Code generated for the 2nd statement z = y*x is:

LDR R0, R5, #-2 ; Load x into R0
LDR R1, R5, #-3 ; load y into R1
MUL R2, R0, R1 ; multiply x,y and store into R2
Replace above with
LDR R1, R5, #-3 ; load y into R1
MUL R2, R0,R1 ; multiply with value (b+c) stored in R0

This saves one memory access..reduces IC and CPI

33
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Code-Optimizing Transformations
• Common subexpression – reduce instruction count

x  =  b * c + 4 t  = b * c
z  =  b * c - 1   x  = t + 4

z  = t – 1

• 2 mult, 1 add, 1 sub replaced by 
• 1 mult, 1 add, 1 sub

• Reduces IC

Þ

34

Code-Optimizing Transformations
• Dead code elimination

x  =  1
x  =  b + c or if x is not referred to at all

Saves one instruction…reduce IC

35
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Code Optimization Example
x =  1
y  =  a * b + 3
z  =  a * b + x + z + 2
x  =  3

propagation
x  =  1
y  =  a * b + 3
z  =  a * b + 1 + z + 2
x  =  3

constant
folding

x  =  1
y  =  a * b + 3
z  =  a * b + 3 + z 
x  =  3

dead code
elimination

y  =  a * b + 3
z  =  a * b + 3 + z 
x  =  3

common
subexpression

t   =  a * b + 3
y  =  t
z  =  t + z 
x  =  3

Original: 2 Mult, 4 Add, 7 Read/Write Mem
New: 1 Mult, 2 Add, 5 Read/Write

36

Code Motion
• Code Motion

• Reduce frequency with which computation performed
o If it will always produce same result
o Especially moving code out of loop

• Move code between blocks
• eg. move loop invariant computations outside of loops

• What does this reduce ?
• Number of times x/y is computed…reduce IC

t  =  x / y
while ( i < 100 ) { while ( i < 100 )  {
*p  =  x / y + i *p  =  t + i
i =  i + 1 i =  i  + 1
} }

37



19

• Replace costly operation with simpler one
• Shift, add instead of multiply or divide

16*x --> x << 4
o Utility is machine dependent
o Depends on cost of multiply or divide instruction
o On Pentium x86, integer multiply only requires 4 CPU cycles

• Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
a[ni + j] = b[j];

ni = ni + n;
}

Strength Reduction

39

Function Inlining
•What happens on a function call ?

• How are function calls implemented on the machine ?
• Is function call = one subroutine call ?

•Function call in C = number of instructions in machine code
• Create activation records, allocate memory
• Manipulate stack and frame pointers

•What happens if we replace function call with body of function 
• i.e., Inline the function

41
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Function Call/Return
• Instructions to Push arguments to stack
• Instructions to Push frame pointer, return addr. 
•Execute instructions of function
• Instructions to Pop return value, reset frame pointer, pop return address
•The bookkeeping instructions are essentially an “overhead”

• They do not do the work of the function
•What happens if we replace function call with body of function ?

• Inline the function
• Remove the function call and return overhead instructions
• …reduce IC

42

Function Inlining

… int myfunc(int m,n)
x= myfunc(i,j) {
… return(m+n);}

After inlining:
…
x = m+n
…..

• Improves performance 
• Removes bookkeeping instructions

• but tradeoff with code readability 
• and code size

43
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Code Optimization 
Techniques: Part 2

44

Machine-Independent Code Optimizations
• Dataflow Analysis and Optimizations

• Constant folding, Copy propagation etc.
• Elimination of common subexpression
• Dead code elimination

• Code motion
• Strength reduction
• Function/Procedure inlining
• Improving memory locality

• Example/Exercise: An example is posted for you to try rewriting 
code

45
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Locality

• Recall Principle of Locality:
• Programs tend to reuse data and instructions near those they have 

used recently, or that were recently referenced themselves.
• Temporal locality: Recently referenced items are likely to be 

referenced in the near future.
• Spatial locality: Items with nearby addresses tend to be referenced 

close together in time.

• Being able to look at code and get a qualitative sense of its 
locality is a key skill for a professional software developer.

46

Locality and performance
•Recall: Memory = Cache + Main memory

• Cache contains small number of bytes
•Recall: cache is arranged as a set of blocks

• Can only fetch block at a time
•ExampleAssume each cache block has 4 words

• If you fetch a block with addresses {0,1,2,3} 
• If four successive instructions use locations 0,1,2,3 then we only have one 

cache miss (first time to fetch block into cache)
• If four successive instructions use locations 0,4,8,12 then each time we 

have to fetch a new cache block
o Each memory access is an access to main memory

•Goal: have locality in memory accesses

47
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Exercise: Improve Cache Hit Rate by 
rewriting the code

• Assume array A[16]
• Assume cache block size = 4
•Assume total cache size= 2 blocks

•Array access pattern:
A[0], A[4], A[8], A[12], A[1], A[5], A[9],…

i=0;
while (i<16){

A[i]= A[i] *10;
i= i+4; }

i=1;
while (i<16){

A[i] = A[i]*20;
i=i+4; }

i=2;
while (i<16){

A[i]=A[i]*30;
i= i+4;}

i=3;
while (i<16){

A[i]= A[i]*40;
i= i+4;}

…
48

Example

Cache

Cache block 0
Cache block 1

2 Cache blocks, 4 bytes in each block
Mem Block x maps into cache block (y mod 2)Memory

(0,1,2,3)
(4,5,6,7)

(8,9,10,11)
(12,13,14,15)

Addresses
In each block

Block 0

Block 1
Block 2

Block 3

i=0;
while (i<16){

A[i]= A[i] *10;
i= i+4; }

i=1;
while (i<16){

A[i] = A[i]*20;
i=i+4; }

i=2;
while (i<16){

A[i]=A[i]*30;
i= i+4;}

i=3;
while (i<16){

A[i]= A[i]*40;
i= i+4;}

…

Cache accesses:
Miss
Miss 
Miss
Miss
Miss

….

0,1,2,3

4,5,6,7

Access pattern:
0,4,8,12,1,5,9,13,2,…

49
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Code with Improved locality
i=0;
while (i<16){

A[i]= A[i] *10;
A[i+1] = A[i+1]*20;
A[i+2] = A[i+2]*30;
A[i+3] = A[i+3]*40 ; }

Cache accesses:
Miss
Hit 
Hit
Hit

Miss
Hit
Hit 
Hit

Miss
….

Array access pattern:
A[0], A[1], A[2], A[3], A[4], A[5], A[6],A[7],….

50

Arrays and Memory organization…  . . 
•Let’s use array data structures to guide our discussions
•Recall: accesses to cache better than accesses to main 
memory/disk

•Recall: Multidimensional Arrays

51
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Declaration
int ia[3][4];

Type
Address

Number
of Rows

Number
of Columns

Declaration at compile time
i.e. size must be known

52

How does a two dimensional array work?

How would you store it?

0 1 2 3

0

1

2

53
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How would you store it?0 1 2 3
0
1
2

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

Column 0 Column 1 Column 2 Column 3

Column Major Order

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

Row 0 Row 2Row 1

Row Major Order

54

How would you store it?0 1 2 3
0
1
2

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

Column 0 Column 1 Column 2 Column 3

Column Major Order

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

Row 0 Row 2Row 1

Row Major Order

C stores in row major order

55
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Question to ask: Locality of Access
•How are elements in the array accessed in your program ?

• Row major or column major or other ?
• How would you iterate over the 2-D array to maintain locality ?

56

Locality Example
• Question: Does this function have good locality?

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum

}
0 1 2 3

0

1

2

Access pattern
Column-major

57
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Locality Example
• Question: Does this function have good locality?
int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum

} 0 1 2 3

0

1

2
Access pattern

Row-major
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Improving Memory Access Times 
(Cache Performance) by Compiler 
Optimizations

• McFarling [1989] improve perf. By rewriting the software
• Instructions

• Reorder procedures in memory so as to reduce cache misses
• Code Profiling to look at cache misses(using tools they developed)

• Data
• Merging Arrays: improve spatial locality by single array of compound 

elements vs. 2 arrays
• Loop Interchange: change nesting of loops to access data in order stored in 

memory
• Loop Fusion: Combine 2 independent loops that have same looping and 

some variables overlap
• Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows

59



29

Compiler optimizations – merging 
arrays

• This works by improving spatial locality
• For example, some programs may reference multiple arrays 

of the same size at the same time
• Could be bad – not enough locality

o Accesses may interfere with one another in the cache – conflict misses

• A solution:  Generate a single, compound array/struct…

60

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality

61
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Compiler optimizations – loop 
interchange

• Some programs have nested loops that access memory in non-
sequential order
• Simply changing the order of the loops may make them access the data in

sequential order…

• What’s an example of this?
• Recall: C stores 2-D arrays in row-major format

62

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

63
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Loop Interchange Example

/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding 
through memory every 100 words; 
improved spatial locality

64

Compiler optimizations – loop fusion
• This one’s pretty obvious once you hear what it is…
• Seeks to take advantage of:

• Programs that have separate sections of code that access the same arrays 
in different loops
o Especially when the loops use common data

• The idea is to “fuse” the loops into one common loop

• What’s the target of this optimization?
• Locality – reduce memory access times
• IC – by reducing number of branches

o Important in pipelined processors

65
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Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

Move inside
first loop

66

Loop Fusion Example

/* After */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per 
access; improve spatial locality & temporal 
locality

67
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And last (but most important?): general concept 
of  Memory Blocking. 

•Can you keep locality in all memory operations
•This is probably the most “famous” of compiler 
optimizations to improve cache performance

•common concept: blocking
• Rewrite code to process blocks of data at a time
• Size of block = ???? Size of cache block!!

68

Compiler optimizations – blocking
• Tries to reduce misses by improving temporal locality and spatial 

locality
• To get a handle on this, you have to work through code on your 

own
• this is used mainly with arrays!
• Simplest case??

• Row-major access

69
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Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory; note column major access!}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

Good locality in access to matrix A; poor locality in access to B

70

Blocked (Tiled) Matrix Multiply
Consider A,B,C to be N-by-N matrices of b-by-b subblocks where           
b= N/m is called the block size 

for i = 1 to N increment by block size
for j = 1 to N increment by block size

{read block of C(i,j) into fast memory}
for k = 1 to N increment by block size

{read block of A(i,k) into fast memory}
{read block of B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Work these details out….need it for the project!
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Code Optimization and Compilers
•Modern compilers provide a menu of code optimization features

• Inlining, strength reduction, register allocation, loop optimizations, etc.

•Some provide default optimization levels
• Example: gcc -03 test.c

•Bottom Line: Everyone wants to run optimized code
• It’s about being smart with your solution!

• Have we seen everything there is to code optimization?....not by a 
long shot !!

• Lots and lots more optimization techniques
o The “cooler” ones need architecture knowledge
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Example of Code Optimization: 
(Final) Project  6

•Topic: Code Performance Optimization 
• Given code for Image operations, rewrite the code to make it run 

faster.
o Use only techniques covered in class.
o No collaboration….and no posting on Chegg.com

•Description will be posted today and code on last day of classes 
and due official final exam date:  Dec. 15th midnight. 

• Should take you 10-12 hours to complete
•Requires:

• Code rewriting & Report writing: summarize your experiments, explain 
why the code ran faster (or slower).

•Very Important: Grade will depend on your analysis – simply 
turning in code (with documentation) that runs faster but no 
report will result in  0 points!

73


