
1

CS 2461
Computer Architecture 1
i.e., Introduction to Computer
Systems

https://GW-CS2461-2022.github.io/
Fall 2022
Instructor: Dr. Bhagi Narahari

1

2

CSCI 2416 Fall 2022 Instruction team
• You will learn more from them than from the Instructor!
• Undergraduate TAs & LAs:
§ Jonathan Lee – BS CS Class of 2023 (Senior)
§ Lauren Hahn – BS CS Class of 2023 (Senior)
§ Sam Kusner – BS CS Class of 2024 (Junior)
§ Kate Halushka – BS CS Class of 2024 (Junior)
§ Karl Simon – BS CS Class of 2024 (junior)

• Grad TA:
§ Ruining Yang – MS CS Class of 2023
§ Grader – TBD

instruction team will have “office hours” and will be helping
with in-class/in-lab activities
UTAs will be leading/teaching the lab sections

2

https://cs2461-2020.github.io/

2

3

Course Structure
• Lecture materials – Read/View before class

§ Posted on course webpage: gw-cs2461-2022.github.io
§ In some cases, videos of lecture topics
§ Slides, Notes, and examples (Circuits, Code,..)

• lecture session activities
§ Work on solving problems in teams with instruction team

• Lab sessions
§ tutorials posted – watch them
§ labs will cover content/topics not covered in lecture (Testing, Debugging,

Unix tools,) and
o Reviews
o Exercises/Demos/Experiments
o May be asked to submit lab work for grading

3

4

Course Logistics….Where do I go to get course
information & materials ?
• Blackboard:

§ Homeworks & Grades
§ Online class (lecture and lab) – recordings from these sessions

• Website: https://cs2461-2022.github.io/
§ Syllabus – schedule, grading criteria, contact info

o Lecture notes(slides, exercises, code samples, circuits,…)
o Tutorial Videos linked from website

• Github: projects, and code submission..
• Piazza:

§ General discussion– post questions to instructors or classmates, all students
benefit from the discussion Q&A

§ Announcements – announcements from instruction team
§ Can also direct a question to instructors

4

https://cs2461-2020.github.io/

3

5

Piazza discussions
• Online discussion forum…purpose:

o to encourage students to ask well formed questions
o To encourage students to answer each others questions

– Most of the time, you do this better than we do!

o Be very careful not to border on plagiarism!
o Don’t post your HW solution to the world,

§ We will send you signup link
§ Do not expect instant response or substitute slack for TA office hours!

o not manned 24 hours/7 days a week
o sometimes answer may take more than 24 hours!
o Mainly a way for students to help one another with common

questions/misunderstandings
– Not a substitute for office hours

§ NO TA can excuse you from anything/or give any extensions

5

6

Piazza
• Online discussion forum (with anonymous posts enabled)

§ The purpose of this:
o to encourage students to ask well formed questions
o To encourage students to answer each others questions

– Most of the time, you do this better than we do!

o Be very careful not to border on plagiarism!
o Don’t post your HW solution to the world,

§ Signup email will be sent…check, and sign up.
§ Do not expect instant response or substitute Piazza for TA office hours!

o Piazza is not manned 24 hours/7 days a week
o sometimes answer may take more than 24 hours!
o Mainly a way for students to help one another with common

questions/misunderstandings
– Not a substitute for office hours

§ NO TA can excuse you from anything/or give any extensions
§ Posting on piazza, not the same as telling instructor things

o E.g. : I’m going to miss the exam! (cannot do this)

6

4

7

In-class exercises/activities
• This course is designed to help you learn through in-class

exercises (lectures and labs)
§ For this to work, you must review the material and come to class

• We want you to complete the exercises while working as
a group
§ Each group is assigned to a breakout room and will have a

member of the instruction team to help.
§ We may ask a group to present solutions to class

• In-class questions/exercises counts towards your class
participation grade

7

8

Course Schedule
• Part 1 (8-9 weeks) of the course spent on hardware stack and

HW/SW Interface
§ From transistors to the design of a simple processor

o Implementation of a simple processor ISA
§ Assembly programming

• Part 2 of the course (5-6 weeks) spent on C Prog Lang. and
translation to Assembly
§ Quick review of C (you will cover some C in CS2113)
§ How are C constructs compiled into (LC3 assembly) machine language
§ Managing Memory

o Stack
o Heap

§ How to make your programs run faster

8

5

Requirements and Grading: Read website for
details on how grade is computed

§ 40% Exams: Two exams
§ Will be held approximately Weeks 7,12
§ Exam may also have an ‘interview’ (oral exam) component if necessary

§ Conducted by instructor and TA

§ 18% Homework and Lab assignments
§ Some lab assignments may require completion within lab time

§ No late submissions….except a “one time pass” of 36 hours

§ 10% Class participation and Quizzes
§ 9 quizzes, will drop lowest score

§ Start of class – if you join late, you miss the quiz
§ Class participation – includes inclass activities.

§ 32% Projects: about 6 projects
§ 2-3 of them will have a teamwork component.
§ You may be asked to demo and explain some of your projects – be prepared

to be examined on any (random) aspect of your solution (code, design, etc.)

9

10

Academic Integrity
• You are here to learn – so keep that in mind
• Strictly enforced!

§ “no collaboration” means none of any kind
§ No asking friends
§ No searching on web for answers

• Violations will lead to at least a zero on the work and a grade
lower than final grade..and formal report to the Integrity council.
§ A 2nd violation goes on your transcript

• Stay on top of your work – come ask me/TAs questions!
• PDT: Plagiarism detection software tool

§ I will be running code submissions through a software tool (MOSS)
§ Any pair of submissions with more than 25% similarity will be closely

examined and reported to the acad. integrity panel

10

6

11

Textbooks/Software
• Intro. to Computing Systems, by Patt and Patel

§ Easy to read – fairly comprehensive.
§ The latest edition is the 3rd edition – but 2nd edition will work just as well

• Other useful books: Unix for Programmers, C Programming

• LC3 simulator: Links on the course webpage
• C compiler – gcc (use shell.seas.gwu.edu)
• Hardware simulators: CedarLogic

§ We will not be supporting Logisim
§ Use CedarLogic in the SEH4040 lab – and in Tompkins 4th floor labs…you have access
§ You can also remote login (remote desktop) to the lab computers.

11

12

Expectations
• Come prepared to class

§ Read the notes/textbook and watch the videos (when available)

• work on problems assigned in class, ask questions
§ This is when you make sure you have learned the concept correctly

• need to spend at least 6 hours per week outside class
• This is considered a hard course because you will be seeing a lot

of new concepts/topics
§ Practice, practice, practice…especially your programming skills

• You will be expected to learn some materials on your own…
§ This is only the beginning..things get more demanding when you get to your

junior year….ask the TA team (they have been through this ‘journey’)

• Academic Integrity: No collaboration on assigned work

12

7

Course workload: What you’ve signed up for….

0 5 10 15 20 25 30

HW1

HW2

HW3

HW4

HW5

HW6

Project 1

Project 2

Project 3

Project 4

Project 5

Project 6

Workload: What you can expect
(hours needed to complete assignment)

13

14

What is CS 2461 about?!
• Look ‘under the hood’ to see how a computer works

§ Explore the interface between hardware and software
§ Understand the components in a processor
§ Bottom up approach: from transistors on up to algorithm design

o i.e., the hardware stack

• With this knowledge you can
§ Understand the link between hardware and software
§ Write better, more efficient software
§ Design better hardware

o Link between hardware and software
§ Appreciate the abstractions that are built on top of these foundations

14

8

15

Pre-requisites
• Pre-requisites
§ CS 1112 – Data structures and algorithms
§ CS 1311 – Discrete Math 1

• Co-requisite: CS 2113
§ Knowledge of C programming language
§ I will be synchronizing with instructor

• Programming practice…system skills
§ Practice, practice,…and more practice

15

16

Course Objectives: What is CS2461 about?
• To understand the structure and operation of a modern

computer system from the ground up.
§ Understand basic hardware concepts and design simple circuits
§ Understand the Von Neumann architecture/computing model

o Assembly language, Processor design)

§ Introductory “system” concepts
o runtime stack, simple I/O devices, Unix OS

• How high level languages are implemented on the machine (using
the C language)
§ How are C programs translated to assembly and implemented on a

machine
§ Proficiency in the C programming language

• Understand how software/program performance is linked to
program and machine properties

16

9

17

Two recurring themes in Computer Sci.
• Abstraction: Productivity Enhancer
§ You don’t need to worry about the details

o You can drive a car without knowing about the internal combustion
engine….until something goes wrong: where is that smoke coming from
!!

§ The notion that we can concentrate on one “level” of the big picture at a
time, with confidence that we can then connect with other levels.

• Hardware and Software
§ hardware and software are inseparably connected, especially at the level

we will be studying
oEven if you specialize in one, you must understand the capabilities of

the other

17

18

What are Computers meant to do ?
A question to anchor our discussions

• Solve problems that are described in English (or Greek or
French or Hindi or Chinese or ...) and use a box filled with
electrons and magnetism to accomplish the task.*
§ This is accomplished using a system of well defined (sometimes)

transformations that have been developed over the last 50+ years.
§ As a whole the process is complex, examined individually the steps are

simple and straightforward

• Definition from the textbook

• So how do you get the electrons to run around and do our
task ?

18

10

19

Two Big Ideas in Computing

• Universal Computational Devices
§ Church-Turing Thesis: every computation can be performed by some “Turing

Machine” - a theoretical universal computational device
– You will see this in the Foundations course CS 3313

• Problem Transformation (Abstraction!)
§ The ultimate objective is to transform a problem expressed in natural

language into electrons running around a circuit (using a succession of
transformations)
oThat’s what Computer Science and Computer Engineering are all about: a

continuum that embraces software & hardware.
oNote the role of compilers/translators

19

20

Big Idea #1: Universal Computing Device
• All computers, given enough time and memory, are capable of

computing exactly the same things
§ Smartphone, laptop, supercomputer

o Limited only by time and memory (and energy)

• Anything that can be computed, can be computed by a computer
§ If you can describe something in terms of computation, it can be done by a

computer

• Formal (mathematical) model of computing = Turing Machine
(1936)

• If all of them have same capabilities which one do you pick
§ Performance
§ Cost
§ Energy/power

20

11

21

Big Idea #2: Transformation between layers
(Abstraction!): Putting the electrons to work!

• Problems

• Algorithms

• Program

• Instruction Set Architecture

• Microarchitecture

• Circuits

• Devices

21

How do we solve a problem using a computer?

• A systematic sequence of transformations between abstraction
layers.

Problem

Algorithm

Program

Instr Set
Architecture

• Software Design: choose algorithms and
data structures. Bubble Sort

• Programming: use language to express
design and implement algorithm. C lang.

• Compiling/Interpreting: convert language
to machine instructions. Use gcc compiler
(to compile to ARM ISA)

22

Example: Problem = Sort a set of numbers

22

12

…and even more layers…

• Processor Design: choose structures to
implement ISA. Choose ARM ISA

Instr Set
Architecture

Microarch

Circuits

Devices

• Logic/Circuit Design: gates and circuits
to implement components of AMD
ARM processor

• Process Engineering & Fabrication:
develop and manufacture
transistors, and connect them using
wires

23

23

24

Why do we need ‘experts’ at each layer –
Choices at each layer

Problem: Sorting

Merge Sort Bubble Sort Quicksort

Java C++ C Python Tradeoffs:
Cost,
Performance,
Power, …

Intel x86 ARM

Apple SamsungAMD

Cortex A32 Cortex A72

Lookahead Adder Ripple Carry Add

CMOS Bipolar GaAs

24

13

25

Our Computing Technology Stack &
transformation between layers

Problem

Algorithm

Program

ISA/Machine Arch.

Devices

Micro-architecture

Logic Circuits

25

26

Transistors – the lowest level in our technology
stack
• What is the device that controls how electrons “run around” to

solve your problem -- the transistor

• Question: How many transistors do you think are in a modern day
Intel processor ?

26

14

27

Focus of this course: The Machine/Hardware
Level

• Machine Architecture: formal specification of operations of

processor – the Instruction Set Architecture (ISA).
§ We will study the ISA, and Assembly Language programming of a simple

computer LC3 – why select a simple “unrealistic” computer?

• Microarchitecture: implementation of the ISA in a CPU.
oWe give an overview of the microarchitecture

• Logic circuits: build each component of Microarch using circuits
§ We study the basic building blocks of logic circuits and logic devices

• Devices: each logic circuit built from transistors
§ we take a quick look at CMOS transistors –device electronics not the focus!

This is going to be ‘all new’ material for most of you…

27

28

Bottom up Approach….Power of Abstraction

Program (C)

Devices (transistors)

Circuits (Logic gates)

Microarchitecture (datapath)

ISA (LC3)

Build logic gates
using transistors

Build datapath
using circuits/gates

Build datapath for LC3 ISA

Compile to ISA/LC3 instructions

Power of Abstraction !!

Our starting point is “how to represent data”

Bottom-up approach: From bits to C programs

28

15

29

Starting point – how do we represent data in a
computer ?

29

