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CS 2461
Computer Architecture 1  
i.e., Introduction to Computer 
Systems

https://GW-CS2461-2022.github.io/ 
Fall   2022
Instructor: Dr. Bhagi Narahari
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CSCI 2416 Fall 2022 Instruction team
• You will learn more from them than from the Instructor! 
• Undergraduate TAs & LAs:
§ Jonathan Lee – BS CS Class of 2023 (Senior)
§ Lauren Hahn – BS CS Class of 2023 (Senior)
§ Sam Kusner – BS CS Class of 2024 (Junior)
§ Kate Halushka – BS CS Class of 2024 (Junior)
§ Karl Simon – BS CS Class of 2024 (junior) 

• Grad TA:
§ Ruining Yang – MS CS Class of 2023 
§ Grader – TBD

instruction team will have “office hours” and will be helping 
with in-class/in-lab activities
UTAs will be leading/teaching the lab sections
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Course Structure
• Lecture materials – Read/View before class

§ Posted on course webpage: gw-cs2461-2022.github.io
§ In some cases, videos of lecture topics
§ Slides, Notes, and examples (Circuits, Code,..)

• lecture session activities
§ Work on solving problems in teams with instruction team

• Lab sessions 
§ tutorials posted – watch them
§ labs will cover content/topics not covered in lecture (Testing, Debugging, 

Unix tools, ) and
o Reviews
o Exercises/Demos/Experiments
o May be asked to submit lab work for grading
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Course Logistics….Where do I go to get course 
information & materials ?
• Blackboard: 

§ Homeworks & Grades
§ Online class (lecture and lab) – recordings from these sessions

• Website: https://cs2461-2022.github.io/ 
§ Syllabus – schedule, grading criteria, contact info

o Lecture notes(slides, exercises, code samples, circuits,…)
o Tutorial Videos linked from website

• Github: projects, and code submission..
• Piazza: 

§ General discussion– post questions to instructors or classmates, all students 
benefit from the discussion Q&A

§ Announcements – announcements from instruction team
§ Can also direct a question to instructors
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Piazza discussions
• Online discussion forum…purpose:

o to encourage students to ask well formed questions
o To encourage students to answer each others questions

– Most of the time, you do this better than we do!

o Be very careful not to border on plagiarism!
o Don’t post your HW solution to the world, 

§ We will send you signup link 
§ Do not expect instant response or substitute slack for TA office hours!

o not manned 24 hours/7 days a week
o sometimes answer may take more than 24 hours!
o Mainly a way for students to help one another with common 

questions/misunderstandings
– Not a substitute for office hours

§ NO TA can excuse you from anything/or give any extensions
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Piazza
• Online discussion forum (with anonymous posts enabled)

§ The purpose of this:
o to encourage students to ask well formed questions
o To encourage students to answer each others questions

– Most of the time, you do this better than we do!

o Be very careful not to border on plagiarism!
o Don’t post your HW solution to the world, 

§ Signup email will be sent…check, and sign up.
§ Do not expect instant response or substitute Piazza for TA office hours!

o Piazza is not manned 24 hours/7 days a week
o sometimes answer may take more than 24 hours!
o Mainly a way for students to help one another with common 

questions/misunderstandings
– Not a substitute for office hours

§ NO TA can excuse you from anything/or give any extensions
§ Posting on piazza, not the same as telling instructor things

o E.g. : I’m going to miss the exam! (cannot do this)
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In-class exercises/activities
• This course is designed to help you learn through in-class 

exercises (lectures and labs)
§ For this to work, you must review the material and come to class

• We want you to complete the exercises while working as 
a group
§ Each group is assigned to a breakout room and will have a 

member of the instruction team to help.
§ We may ask a group to present solutions to class

• In-class questions/exercises counts towards your class 
participation grade
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Course Schedule
• Part 1 (8-9 weeks) of the course spent on hardware stack and 

HW/SW Interface
§ From transistors to the design of a simple processor

o Implementation of a simple processor ISA 
§ Assembly programming

• Part 2 of the course (5-6 weeks) spent on C Prog Lang. and 
translation to Assembly
§ Quick review of C  (you will cover some C in CS2113)
§ How are C constructs compiled into (LC3 assembly) machine language
§ Managing Memory   

o Stack
o Heap

§ How to make your programs run faster
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Requirements and Grading: Read website for 
details on how grade is computed

§ 40% Exams: Two exams
§ Will be held approximately Weeks 7,12 
§ Exam may also have an ‘interview’ (oral exam) component if necessary

§ Conducted by instructor and TA

§ 18% Homework and Lab assignments
§ Some lab assignments may require completion within lab time

§ No late submissions….except a “one time pass” of 36 hours

§ 10% Class participation and Quizzes
§ 9 quizzes, will drop lowest score

§ Start of class – if you join late, you miss the quiz
§ Class participation – includes inclass activities.

§ 32% Projects: about 6 projects
§ 2-3 of them will have a teamwork component.
§ You may be asked to demo and explain some of your projects – be prepared 

to be examined on any (random) aspect of your solution (code, design, etc.)
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Academic Integrity
• You are here to learn – so keep that in mind
• Strictly enforced!

§ “no collaboration” means none of any kind
§ No asking friends
§ No searching on web for answers

• Violations will lead to at least a zero on the work and a grade 
lower than final grade..and formal report to the Integrity council.
§ A 2nd violation goes on your transcript

• Stay on top of your work – come ask me/TAs questions!
• PDT: Plagiarism detection software tool

§ I will be running code submissions through a software tool (MOSS)
§ Any pair of submissions with more than 25% similarity will be closely 

examined and reported to the acad. integrity panel
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Textbooks/Software
• Intro. to Computing Systems, by Patt and Patel 

§ Easy to read – fairly comprehensive. 
§ The latest edition is the 3rd edition – but 2nd edition will work just as well

• Other useful books: Unix for Programmers, C Programming 

• LC3 simulator: Links on the course webpage 
• C compiler – gcc (use shell.seas.gwu.edu )
• Hardware simulators: CedarLogic

§ We will not be supporting Logisim
§ Use CedarLogic in the SEH4040  lab – and in Tompkins 4th floor labs…you have access 
§ You can also remote login (remote desktop) to the lab computers.
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Expectations
• Come prepared to class

§ Read the notes/textbook and watch the videos (when available)

• work on problems assigned in class, ask questions
§ This is when you make sure you have learned the concept correctly

• need to spend at least 6 hours per week outside class
• This is considered a hard course because you will be seeing a lot 

of new concepts/topics 
§ Practice, practice, practice…especially your programming skills

• You will be expected to learn some materials on your own…
§ This is only the beginning..things get more demanding when you get to your 

junior year….ask the TA team (they have been through this ‘journey’)

• Academic Integrity: No collaboration on assigned work
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Course workload: What you’ve signed up for….
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Workload: What you can expect
(hours needed to complete assignment) 
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What is CS 2461 about?!
• Look ‘under the hood’ to see how a computer works

§ Explore the interface between hardware and software
§ Understand the components in a processor
§ Bottom up approach: from transistors on up to algorithm design

o i.e., the hardware stack

• With this knowledge you can
§ Understand the link between hardware and software 
§ Write better, more efficient software
§ Design better hardware

o Link between hardware and software
§ Appreciate the abstractions that are built on top of these foundations
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Pre-requisites
• Pre-requisites
§ CS 1112 – Data structures and algorithms
§ CS 1311 – Discrete Math 1

• Co-requisite: CS 2113
§ Knowledge of C programming language
§ I will be synchronizing with instructor

• Programming practice…system skills
§ Practice, practice,…and more practice
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Course Objectives: What is CS2461 about?
• To understand the structure and operation of a modern 

computer system from the ground up. 
§ Understand basic hardware concepts and design simple circuits
§ Understand the Von Neumann  architecture/computing model

o Assembly language, Processor design)

§ Introductory “system” concepts 
o runtime stack, simple I/O devices, Unix OS

• How high level languages are implemented on the machine (using 
the C language) 
§ How are C programs translated to assembly and implemented on a 

machine
§ Proficiency in the C programming language

• Understand how software/program performance is linked to 
program and machine properties
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Two recurring themes in Computer Sci.
• Abstraction: Productivity Enhancer 
§ You don’t need to worry about the details

o You can drive a car without knowing about the internal combustion 
engine….until something goes wrong: where is that smoke coming from 
!!

§ The notion that we can concentrate on one “level” of the big picture at a 
time, with confidence that we can then connect with other levels. 

• Hardware and Software
§ hardware and software are inseparably connected, especially at the level 

we will be studying
oEven if you specialize in one, you must understand the capabilities of 

the other
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What are Computers meant to do ? 
A question to anchor our discussions

• Solve problems that are described in English (or Greek or 
French or Hindi or Chinese or ...) and use a box filled with 
electrons and magnetism to accomplish the task.*
§ This is accomplished using a system of well defined (sometimes) 

transformations that have been developed over the last 50+ years.
§ As a whole the process is complex, examined individually the steps are 

simple and straightforward

• Definition from the textbook

• So how do you get the electrons to run around and do our 
task ?
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Two Big Ideas in Computing

• Universal Computational Devices
§ Church-Turing Thesis: every computation can be performed by some “Turing 

Machine” - a theoretical universal computational device
– You will see this in the Foundations course CS 3313

• Problem Transformation (Abstraction!)
§ The ultimate objective is to transform a problem expressed in natural 

language into electrons running around a circuit (using a succession of 
transformations)
oThat’s what Computer Science and Computer Engineering are all about: a 

continuum that embraces software & hardware.
oNote the role of compilers/translators
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Big Idea #1: Universal Computing Device
• All computers, given enough time and memory, are capable of 

computing exactly the same things
§ Smartphone, laptop, supercomputer

o Limited only by time and memory (and energy)

• Anything that can be computed, can be computed by a computer
§ If you can describe something in terms of computation, it can be done by a 

computer

• Formal (mathematical) model of computing = Turing Machine 
(1936)

• If all of them have same capabilities which one do you pick
§ Performance
§ Cost
§ Energy/power
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Big Idea #2: Transformation between layers
( Abstraction!): Putting the electrons to work! 

• Problems

• Algorithms

• Program

• Instruction Set Architecture

• Microarchitecture

• Circuits

• Devices
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How do we solve a problem using a computer?

• A systematic sequence of transformations between abstraction 
layers.

Problem

Algorithm

Program

Instr Set
Architecture

• Software Design: choose algorithms and 
data structures. Bubble Sort

• Programming: use language to express 
design and implement algorithm. C lang.

• Compiling/Interpreting: convert language 
to machine instructions. Use gcc compiler 
(to compile to ARM ISA)
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Example: Problem = Sort a set of numbers
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…and even more layers…

• Processor Design: choose structures to 
implement ISA. Choose ARM ISA

Instr Set
Architecture

Microarch

Circuits

Devices

• Logic/Circuit Design: gates and circuits 
to  implement components of AMD 
ARM processor

• Process Engineering & Fabrication: 
develop and manufacture
transistors, and connect them using 
wires
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Why do we need ‘experts’ at each layer –
Choices at each layer 

Problem: Sorting

Merge Sort Bubble Sort Quicksort

Java C++ C Python Tradeoffs:
Cost,
Performance,
Power, …

Intel x86 ARM

Apple SamsungAMD

Cortex A32 Cortex A72

Lookahead Adder Ripple Carry Add

CMOS Bipolar GaAs

24



13

25

Our Computing Technology Stack & 
transformation between layers

Problem 

Algorithm

Program

ISA/Machine Arch.

Devices

Micro-architecture

Logic Circuits
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Transistors – the lowest level in our technology 
stack
• What is the device that controls how electrons “run around” to 

solve your problem -- the transistor 

• Question: How many transistors do you think are in a modern day 
Intel processor ?
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Focus of this course: The Machine/Hardware 
Level 

• Machine Architecture: formal specification of operations of 

processor – the Instruction Set Architecture (ISA).
§ We will study the ISA, and Assembly Language programming of a simple 

computer LC3 – why select a simple “unrealistic” computer?

• Microarchitecture: implementation of the ISA in a CPU.
oWe give an overview of the microarchitecture

• Logic circuits: build each component of Microarch using circuits
§ We study the basic building blocks of logic circuits and logic devices

• Devices: each logic circuit built from transistors
§ we take a quick look at CMOS transistors –device electronics not the focus!

This is going to be ‘all new’ material for most of you…
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Bottom up Approach….Power of Abstraction

Program (C)

Devices (transistors)

Circuits (Logic gates)

Microarchitecture (datapath)

ISA (LC3)

Build logic gates
using transistors

Build datapath
using circuits/gates

Build datapath for LC3 ISA

Compile to ISA/LC3 instructions

Power of Abstraction !!

Our starting point is “how to represent data”

Bottom-up approach: From bits to C programs
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Starting point – how do we represent data in a 
computer ? 
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