Logic Design (Part 3) Combinational Logic Devices (Chapter 3 + Notes)

Based on slides © McGraw-Hill
Additional material © 2013 Farmer Additional material © 2020 Narahari

Digital Logic Circuits

- we can build the basic logic gates using transistors
- Can build any boolean function using these gates
- Theory underlying design of Boolean functions ..Boolean Algebra
- Optimize circuit using Karnaugh maps
- Power of abstraction....To build boolean functions, you can work with basic gates - no need to go down to the transistor level !!
- Use these gates as building blocks to build more complex combinational circuits
- Combinational Logic Devices: Adder, Multiplier, Multiplexer, Decoder,
- ...any boolean function

Definitions: Combinational and Sequential Logic Circuits

- A circuit is a collection of devices that are physically connected by wires
- Combinational circuit
- Sequential circuit
- In Combinational circuit the input determines output
- In sequential circuit, the input and the previous 'state' (previous values) determine output and next 'state'
- Need to 'remember' previous value - need memory device
- Need circuit to implement concept of storage
- This is out next topic.....

3

Recall our Goal....

- Design a machine that translates from natural language to electrons running around to solve the problem
- We now have devices (transistor) that can get electronics to run around based on input signals....and built logic gates using transistors
- Next: we want to build a computer
- First step: Design a collection of logic devices that implement important functions that will be needed to build our computer
- S/W Analogy: When you write your software, you are using a collection of concepts, tools, IDEs and libraries
- Each has been built, and tested, for you
- All you have to do is combine them!

Combinational Logic Devices

- We saw how we can build the simple logic gates using transistors and build any boolean function using these gates
- Use these gates as building blocks to build more complex combinational circuits
- Decoder: based on value of n-bit input control signal, select one of 2^{N} outputs
- Multiplexer: based on value of N -bit input control signal, select one of 2^{N} inputs.
- Adder: add two binary numbers
- ...any boolean function
- SW Analogy: We are building a library of functions
- To design your solution, you can use any device in the library!

5

Three Devices we focus on...

- N -bit Adder
- Can build Subtract using Adder
- Decoder
- Decode a bit string
- Multiplexer
- A channel selector
- Other useful combinational logic devices
- Multipliers
- Shifters (but may need storage)
- Comparators (to compare two numbers)
- ...

1. N-bit Adder

- Add two N-bit numbers, represented in 2's complement
- Algorithm (for now): add corresponding bit positions, starting with least significant position, and propagate the carry bit leftward.
- In practice: there are faster algorithms
- Big-Oh Analysis:
- To add N bit numbers how 'far' will the carry propagate?

7

Binary Addition

- Binary addition - just like base 10 (decimal) !
- Add from right to left, propagating carry
- Example using unsigned integers

Key Observation: We add one bit at a time therefore, building block is a 1-bit adder Use 1-bit adder to build N-bit adder!

1-bit Adder

- Two inputs A, B and Two outputs: S (sum) and Carry out (C)
- Truth table:
- Problem?
- This works only for bit 0 where there is

\mathbf{A}	\mathbf{B}	\mathbf{S}	\mathbf{C}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Called a half adder
- In general, we can have a carry-in input, so 3 inputs are $A, B, C_{\text {in }}$ (carry-in) and 2 outputs $\mathrm{S}, \mathrm{C}_{\text {out }}$ (carry out)

Binary Arithmetic: Half Adder

- Logical Function: Half Adder, implement Carry Out:

A	B	Sum	$C_{\text {out }}$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Addition: Full Adders

- There is a limit with the half adder
- It can't implement multiple-bit addition

- It works for "least significant bit," but won't work for the next

- We need an adder that has 3 inputs and 2 outputs

Full Adder

Truth Table for Full-Adder

A	B	Carry In	Out	Carry Out
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	1	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	1
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	1
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1

1-bit Full Adder

-Add two bits and carry-in, produce one-bit sum and carry-out.

A	B	$C_{i n}$	S	$C_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

N-bit Adder

CarryOut: useful for detecting overflow

Carryln: assumed to be zero if not present

Four-bit Adder

How about a "subtractor?"

- Build a subtracter from out multi-bit adder
- Calculate $A-B=A+-B$
- Negate B
- Recall $-\mathrm{B}=\mathrm{NOT}(\mathrm{B})+1$

Approach\#2

The Decoder

- Useful for recognizing a particular bit pattern of 0's and 1's
- Connection to Computer Organization:
- Program consists of instructions -- coded in binary (0's and 1's)
- We want to look at a bit string for the instruction and determine what the instruction is
- Is it an ADD or a MULT or a GOTO or.....
- each instruction is given a unique encoding \& decoder looks at the encoding and determines which ONE of the instructions the code corresponds to (i.e, which instruction has to be executed)
- In S/W, a "case"/switch statement:
- One of the cases will be evaluated depending on value of 'input'

Switch (case) statement in C

```
int x;
switch(x) {
        case 0: /* if x=0 call func Kevin */
        Kevin(); /* ex: Kevin does add */
        break;
        case 1: /* if x=1 call func Graham */
        Graham();
        break;
    case 2: /* if x=2 call func Sarah */
        Sarah(); /* ex: Sarah does AND */
        break;
    case 3: /* if x=3 call func Linnea */
        Linnea();
        break;
        default: printf("invalid value of x"\n);
        break;
}
..
```


$\mathrm{N}-\mathbf{2}^{\mathrm{N}}$ Decoder

- N inputs - these represent the binary encoding of the 2^{N} Outputs
- Ex: if $\mathrm{N}=2$, then 4 outputs $0,1,2,3$, encoded to be 'switched on' when inputs are one of $00,01,10,11$ respectively

- Schematic:

Notational Convenience: Typically we label the outputs from 0 to $2^{\mathrm{N}}-1$: $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}-1}$ Output $x_{i}=1$ if decimal value of input $=i$

Designing a Decoder: Truth table

4 output lines $\mathrm{x} 0, \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ \& 2 inputs $\mathrm{a} 1, \mathrm{a} 0$
From truth table, design circuit:
$x_{0}=a_{1}$ '. a_{0}^{\prime} (i.e., (NOT a_{1}) AND (NOT a_{0}))
$\mathrm{x}_{1}=\mathrm{a}_{1} \cdot \cdot \mathrm{a}_{0} \quad \mathrm{x}_{2}=\mathrm{a}_{1} \cdot \mathrm{a}_{0}^{\prime} \quad \mathrm{x}_{3}=\mathrm{a}_{1} \cdot \mathrm{a}_{0}$

a_{1}	a_{0}	x_{0}	x_{1}	x_{2}	x_{3}
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Decoder

2-bit decoder (4 input decoder)

- An n input decoder has 2^{n} outputs.
- Output ${ }_{i}$ is 1 iff the binary value of the n bit input is i.
- At any time, exactly one output is 1 , all others are 0.

The Multiplexer - selector

- Multiplexer (MUX) is a device that selects one of the inputs to be connected to the output
- Similar to a channel selector

This is a 2-1 Multiplexer: Selects one of 2 inputs as the output 23
23

N-1 Multiplexer

- Multiplexer selects one of the N inputs as the output
- It needs $\log _{2} \mathrm{~N}$ 'select lines' to determine which of the N inputs is selected to appear at the output
- Schematic of a MUX:

- Multi-bit muxes
- Can switch an entire "bus" or group of signals
- Switch n-bits with n muxes with the same select bits
- Built using 16 1-bit 4-1 MUXes and has same S

The Multiplexer (MUX) - 2-1 and 4-1 MUX

- Selector/Chooser of signals - Imagine Switching Rairoad Tracks
- Multi-way switch

4-to-1 Mux

Example: MUX in a circuit

- Inputs A, B, C and x (select signal); Output F
- Devices/Gates: 2-1 MUX, AND gate

- If $x=0$, output of $M U X=B$ and $F=B . C$
- If $x=1$, output of $M U X=A$ and $F=A . C$
- Can write $F=x A C+x$ 'BC

Combinational vs. Sequential

-Combinational Circuit

- always gives the same output for a given set of inputs
- ex: adder always generates sum and carry, regardless of previous inputs
-Sequential Circuit
- stores information
- output depends on stored information (state) plus input
- so a given input might produce different outputs, depending on the stored information
- useful for building "memory" elements and "state machines"

Next . . Circuits with "memory"

- First we need to build a device that can store a bit
- Using our current 'library' of gates
- Building memory follows
- How to model sequential circuits/machines
- Methodology for designing these machines: Finite state machine
- Model as a directed graph
- How to we "synchronize" and "coordinate" the different pieces in the circuit....enter the CLOCK
- can we use a sequential circuit to "control" how computations take place in a processor ?
- Is a sequential circuit = Computer?
- Limitations of sequential machines..more in Foundations course

Appendix

A multi function Arithmetic Unit

- In a CPU, we'd like to do BOTH addition and subtraction
- Can we give the CPU the ability to choose between two pieces of hardware?
- Yes!
- Using a MUX to build a multifunction ALU

Building an ALU using MUX
 Adder/Subtracter - Approach \#1

Subtracter

Adder/Subtracter - Approach \#2 (Optimize HW)

Adder/Subtracter

