
1

Logic Design (Part 3)
Combinational Logic
Devices (Chapter 3 +
Notes)

Based on slides © McGraw-Hill
Additional material © 2013 Farmer

Additional material © 2020 Narahari

1

2

Digital Logic Circuits
§ we can build the basic logic gates using transistors
§ Can build any boolean function using these gates

• Theory underlying design of Boolean functions ..Boolean Algebra
o Optimize circuit using Karnaugh maps

§ Power of abstraction….To build boolean functions, you can
work with basic gates – no need to go down to the transistor
level !!

§ Use these gates as building blocks to build more complex
combinational circuits
• Combinational Logic Devices: Adder, Multiplier, Multiplexer, Decoder,

…..
• …any boolean function

2

2

3

Definitions: Combinational and Sequential Logic
Circuits
§ A circuit is a collection of devices that are physically

connected by wires
• Combinational circuit
• Sequential circuit

§ In Combinational circuit the input determines output
§ In sequential circuit, the input and the previous ‘state’

(previous values) determine output and next ‘state’
• Need to ‘remember’ previous value – need memory device
• Need circuit to implement concept of storage
• This is out next topic…..

3

4

Recall our Goal….
§ Design a machine that translates from natural language to

electrons running around to solve the problem
• We now have devices (transistor) that can get electronics to run

around based on input signals….and built logic gates using transistors
§ Next: we want to build a computer

• First step: Design a collection of logic devices that implement
important functions that will be needed to build our computer

§ S/W Analogy: When you write your software, you are using
a collection of concepts, tools, IDEs and libraries
• Each has been built, and tested, for you
• All you have to do is combine them!

4

3

5

Combinational Logic Devices
§ We saw how we can build the simple logic gates using

transistors and build any boolean function using these gates
§ Use these gates as building blocks to build more complex

combinational circuits
• Decoder: based on value of n-bit input control signal,

select one of 2N outputs
• Multiplexer: based on value of N-bit input control signal,

select one of 2N inputs.
• Adder: add two binary numbers
• …any boolean function

§ SW Analogy: We are building a library of functions
• To design your solution, you can use any device in the library!

5

6

Three Devices we focus on…
§ N-bit Adder

• Can build Subtract using Adder
§ Decoder

• Decode a bit string
§ Multiplexer

• A channel selector

§ Other useful combinational logic devices
• Multipliers
• Shifters (but may need storage)
• Comparators (to compare two numbers)
• …

6

4

7

1. N-bit Adder
§ Add two N-bit numbers, represented in 2’s complement
§ Algorithm (for now): add corresponding bit positions, starting

with least significant position, and propagate the carry bit
leftward.
• In practice: there are faster algorithms
• Big-Oh Analysis:

o To add N bit numbers how ‘far’ will the carry propagate ?

7

8

Binary Addition

§ Binary addition – just like base 10 (decimal) !
• Add from right to left, propagating carry
• Example using unsigned integers

10010 10010 01111
+ 01001 + 01011 + 00001

carry

11011 11101 10000

(18)

(9)

(27)

(18)

(11)

(29)

(15)

(1)

(16)

Key Observation: We add one bit at a time
therefore, building block is a 1-bit adder
Use 1-bit adder to build N-bit adder!

8

5

9

1-bit Adder
§ Two inputs A, B and Two outputs: S

(sum) and Carry out (C)
§ Truth table:

§ Problem?
§ This works only for bit 0 where there is

no Carry-in
• Called a half adder

§ In general, we can have a carry-in input,
so 3 inputs are A,B,Cin (carry-in) and 2
outputs S, Cout (carry out)

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

9

10

Binary Arithmetic: Half Adder
§ Logical Function: Half Adder, implement Carry Out:

HA SumA

B

CarryOut (Cout)

A B Sum Cout
0 0 0 0
0 1 1 0

1 0 1 0

1 1 0 1

Half Adder’s Logic Function:
SUM=((A’ AND B’) OR (A AND B))’
C=((A’ AND B’) OR (A’ AND B) OR (A AND B’))’

Realize though: C= (A AND B), this isn’t always best way!

10

6

11

Addition: Full Adders
§ There is a limit with the half adder

• It can’t implement multiple-bit addition

• It works for “least significant bit,” but won’t work for the next

• We need an adder that has 3 inputs and 2 outputs 3-11

HA SumA

B

CarryOut (Cout)

1
+ 1

1 0

A
B
SumCout

1 1
+ 1 1

1 1 0

A
B

Sum

Cin

Cout

1

FA Sum
A

CarryIn

CarryOut

B

11

12

Full Adder

A B

SUM-OUT

Carry INCarry OUT

12

7

13

Truth Table for Full-Adder

A B Carry In Out Carry Out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

13

14

1-bit Full Adder
§Add two bits and carry-in,
produce one-bit sum and carry-out. A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

14

8

153-15

CarryIn
N-bit Adder

. . .

Add S0

A0

CarryIn0

CarryOut0
B0

Add S1

A1

CarryIn1

CarryOut1
B1

Add S2

A2

CarryIn2

CarryOut2
B2

CarryIn

CarryOut

A

B
S

16
16

16

CarryOut: useful for
detecting overflow

CarryIn: assumed to be
zero if not present

+

15

16

Four-bit Adder

16

9

17

How about a “subtractor?”
§ Build a subtracter from out multi-bit adder

• Calculate A – B = A + –B
• Negate B
• Recall –B = NOT(B) + 1

B
16

adder

CarryIn

S
16

16
+1

16

A
16

Approach#1

adder S
16

B
16 16

A
16 CarryIn

1

Approach#2

W
e “carry in” a 1

(no longer need increm
enter)

17

18

The Decoder
§ Useful for recognizing a particular bit pattern of 0’s and 1’s
§ Connection to Computer Organization:

• Program consists of instructions -- coded in binary (0’s and 1’s)
• We want to look at a bit string for the instruction and determine what

the instruction is
o Is it an ADD or a MULT or a GOTO or…..
o each instruction is given a unique encoding & decoder looks at

the encoding and determines which ONE of the instructions the
code corresponds to (i.e, which instruction has to be executed)

§ In S/W, a “case”/switch statement:
• One of the cases will be evaluated depending on value of ‘input’

18

10

19

Switch (case) statement in C
int x;
….
switch(x) {

case 0: /* if x=0 call func Kevin */
Kevin(); /* ex: Kevin does add */
break;

case 1: /* if x=1 call func Graham */
Graham();
break;

case 2: /* if x=2 call func Sarah */
Sarah(); /* ex: Sarah does AND */
break;

case 3: /* if x=3 call func Linnea */
Linnea();
break;

default: printf(”invalid value of x”\n);
break;

}
..

19

20

N-2N Decoder
§ N inputs – these represent the binary encoding of the 2N

Outputs
• Ex: if N=2, then 4 outputs 0,1,2,3, encoded to be ‘switched on’ when

inputs are one of 00, 01, 10, 11 respectively

§ Schematic:

N

inputs
2N outputs

Out 0

Out 2N-1

Notational Convenience: Typically we label the outputs
from 0 to 2N-1: x0, x1,…,xN-1
Output xi =1 if decimal value of input = i

20

11

Designing a Decoder: Truth table
4 output lines x0,x1,x2,x3 & 2 inputs a1,a0

a1 a0 x0 x1 x2 x3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

From truth table, design circuit:
x0= a1’.a0’ (i.e., (NOT a1) AND (NOT a0))
x1= a1’.a0 x2= a1.a0’ x3= a1.a0

21

22

Decoder

• An n input decoder
has 2n outputs.

• Outputi is 1 iff the
binary value of the n-
bit input is i.

• At any time, exactly
one output is 1, all
others are 0.

1, iff A,B is 00A
B

1, iff A,B is 01

1, iff A,B is 10 - Tim

1, iff A,B is 11

i = 0

i = 1

i = 2

i = 3

2-bit decoder
(4 input decoder)

22

12

23

The Multiplexer - selector
§ Multiplexer (MUX) is a device that selects one of the inputs

to be connected to the output
• Similar to a channel selector

output

Input
Channel 0

Input
Channel 1

1

0

output=
channel 1

1

0 output=
channel 0

This is a 2-1 Multiplexer: Selects one of 2 inputs as the output

select
input 1

select
input 0

23

24

N-1 Multiplexer
§ Multiplexer selects one of the N inputs as the output

• It needs log2 N ‘select lines’ to determine which of the N inputs is
selected to appear at the output

• Schematic of a MUX:

§ Multi-bit muxes
• Can switch an entire “bus” or group of signals
• Switch n-bits with n muxes with the same select bits
• Built using 16 1-bit 4-1 MUXes and has same S

S= Log N
Select lines

OutputN inputs

S
216

16

16
16

16

24

13

253-25

The Multiplexer (MUX) – 2-1 and 4-1 MUX
§ Selector/Chooser of signals – Imagine Switching Railroad Tracks

• Multi-way switch

0 1
2-to-1 Mux

00
2

01
2

10
2

11
2

4-to-1 Mux

S

O
B

A

A

B

S=

O

Input “S” selects A or B to attach to “O” output
Acts like an “IF/ELSE” statement

25

27

Multiplexer (MUX) • In general, a MUX has
o2n data inputs
on select (or control) lines
oand 1 output.

• It behaves like a channel selector.

A 4-to-1 MUX:
Out takes the value of A,B, C or D
depending on the value of S (00, 01, 10, 11)
Out = A if S=00 Out = B if S = 01

Out = C if S=10 Out=D if S=11

S[1:0]

A B C D

Out

 .S D.S S. C.S .S SB. S. SA. Out 10101010 +++=

A B C D

Out

S0

S1

Multiplexer (MUX) • In general, a MUX has
o2n data inputs
on select (or control) lines
oand 1 output.

• It behaves like a channel selector.

A 4-to-1 MUX:
Out takes the value of A,B, C or D
depending on the value of S (00, 01, 10, 11)
Out = A if S=00 Out = B if S = 01

Out = C if S=10 Out=D if S=11

S[1:0]

A B C D

Out

 .S D.S S. C.S .S SB. S. SA. Out 10101010 +++=

A B C D

Out

S0
S1

Designing 4-1 MUX Using Logic Gates

27

14

28

Example: MUX in a circuit
§ Inputs A,,B,C and x (select signal); Output F
§ Devices/Gates: 2-1 MUX, AND gate

§ If x=0, output of MUX = B and F= B.C
§ If x=1, output of MUX = A and F = A.C
§ Can write F = xAC + x’BC

A

x

B C
F

0

28

29

Combinational vs. Sequential
§Combinational Circuit

• always gives the same output for a given set of inputs
o ex: adder always generates sum and carry,

regardless of previous inputs

§Sequential Circuit
• stores information
• output depends on stored information (state) plus input

o so a given input might produce different outputs,
depending on the stored information

• useful for building “memory” elements and “state machines”

29

15

30

Next . . Circuits with “memory”

§ First we need to build a device that can store a bit
• Using our current ‘library’ of gates
• Building memory follows

§ How to model sequential circuits/machines
• Methodology for designing these machines: Finite state machine
• Model as a directed graph

§ How to we “synchronize” and ”coordinate” the different
pieces in the circuit….enter the CLOCK

§ can we use a sequential circuit to “control” how
computations take place in a processor ?

§ Is a sequential circuit = Computer ?
• Limitations of sequential machines..more in Foundations course

30

31

Appendix

31

16

32

A multi function Arithmetic Unit
§ In a CPU, we’d like to do BOTH addition and subtraction

• Can we give the CPU the ability to choose between two pieces of
hardware?

• Yes!
§ Using a MUX to build a multifunction ALU

32

33

Building an ALU using MUX
Adder/Subtracter - Approach #1

CarryIn

CarryOut

A

B
S

16
16

16

Adder

CarryIn
A

B
S

16
16

16 16

1

Subtracter

Adder/Subtracter
A

B

16
16

16

16
16

1 16
S

Add/Sub If Add/Sub = 0 then Add
If Add/Sub=1 then Sub

33

17

34

Adder/Subtracter - Approach #2 (Optimize HW)

CarryIn
A

B
S

16
16

16 16

1
CarryIn

CarryOut

A

B
S

16
16

16

Adder Subtracter

Adder/Subtracter

CarryIn

S
16A

16

16
B 16

Add/Sub
1

34

