
1

Logic Design (Part 4)
Latches – Storage devices
(Chapter 3 + Notes)

Based on slides © McGraw-Hill
Additional material © 2013 Farmer

Additional material © 2021 Narahari

• Log in to a Windows laptop
• Download CedarLogic-Circuits-Latches.cdl file

from webpage to your desktop and open in CedarLogic

1

Recap: Combinational Logic & Devices
§ Basic logic gates (AND, OR, NOT,….)

• Built using transistors

§ Combinational (more complex) logic devices
• Multiplexers, Decoders, Adders, Sub, Multipliers, Comparators (x=y?)
• Behavior modeled using a Boolean function
• Built using logic gates

§ Our current ”library”: basic logic gates, combinational logic
devices
• To build a circuit we can use anything from the library…..

• Is this enough?

2

2

So Far: Combinational Logic

§ Combinational Logic:
• Always gives the same output for a given set of inputs
• Aka “state-less” (i.e., no “state” or “memory”)

§ Sequential Logic:
• Its output depends on its inputs & its last output!
• Forms the basis for “state” or “memory” for a computer

3

Next . . Circuits with “memory”

§ First we need to build a device that can store a bit
• Using our current ‘library’ of gates
• Building memory follows

§ How to model sequenPal circuits/machines
• Methodology for designing these machines: Finite state machine
• Model as a directed graph

§ How do we “synchronize” and ”coordinate” the different pieces in
the circuit….enter the CLOCK

§ can we use a sequenPal circuit to “control” how computaPons
take place in a processor ?

§ Is a sequenPal circuit = Computer ?
• LimitaWons of sequenWal machines..more in FoundaWons course

4

3

(Finite) State Machine
§ type of sequential circuit

• Combines combinational logic with storage
• “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

5

Sequential Logic: Starting point
• Where do we start: Build a device, using combinational logic

devices, to store a value
• RS Latch

• Use this to build a more useful/easier to use latch – the D Latch
• concept of memory

• Build it using the devices we have thus far
• How ? Use “feedback” circuit

6

4

Feedback Circuits
Ø What happens if we feed the output of a combinational logic circuit to an

input in the circuit ?
Ø This is the key to circuits that can store values!

Ø Stable circuit
Ø Output point of circuit retains value indefinitely
Ø If Q=1 it will remain 1
Ø If Q=0 it will remain 0

Ø Unstable circuit
Ø State that remains constant only for a duration of a few gate delays

Ø key takeaway: build stable circuits that can “hold” their value

1 0 1

0 1 0

7

Latches and Flip-Flops
• Latch: basic circuit for storage

• Operate on changes in Level (i.e., 1 or 0)
• Flip-flop:

• Sequential circuits take input from output of storage
• Latches that work on change of level can lead to unstable sequential circuits

o As level changes the outputs change --- inputs change!
• Flip-Flop circuits designed to operate properly when they are part of a

sequential circuit
• Designed to work in a synchronized circuit with a Clock

8

5

R-S Latch
• The R-S latch is a bi-stable circuit which means that it can happily exist in

either of two stable states. Just like a see-saw.
• You can push the latch from one state to another by setting or resetting it

with the S-R signals
• The logic levels are maintained because of the feedback paths from outputs

to inputs.

9

Most Basic Sequential Logic Circuit: R-S Latch
§ Most fundamental unit for static memory

• Has the ability to “store” its last output

§ R-S Latch – Cross-Coupled NAND gates
• Output of each NAND gate serves as input to the other
• Two inputs: S (SET) & R (RESET)
• Two outputs: Q and NOT(Q) Recall: NOT(Q)= ~Q = Q’ = Q
• Called a “Latch” because it can “Latch” onto data coming in

S

R

Q~Q

10

6

R-S Latch – Behavior/Truth Table
§ First, recall truth table for a NAND gate:

§ R-S Latch Operation:
• Best place to start is S=1, R=0

S=1

R=0

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

Next, look at top NAND gate
àIts inputs are: 1 and 1

Blue 1, comes from lower NAND
àProduces a 0 at its output

Therefore, when S=1, R=0
The output of latch is: Q=0, ~Q=10

X1
1

0

11

Truth Table for R-S Latch:

Called the “RESET” action, as Q is set to 0
Also, notice: Q and ~Q opposite

Most Basic Sequential Logic Circuit: R-S Latch
§ First, recall truth table for a NAND gate:

§ R-S Latch Operation:

S=1

R=0

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

ACTION S R Q ~Q
0 0
0 1

RESET 1 0 0 1

1 1

01

12

7

Most Basic Sequential Logic Circuit: R-S Latch
§ Truth table for a NAND gate:

§ R-S Latch Operation:

3-13

A B C
0 0 1
0 1 1

1 0 1

1 1 0

Truth Table for R-S Latch:

HOLD’s last value on its outputs!
OUTPUT depends on input and last output

ACTION S R Q ~Q
0 0

SET 0 1 ? ?

RESET 1 0 0 1

- -

HOLD 1 1 0 1

0

1

S=1

R=1

Q~Q

Next, set S=1 R=1
Check value of Q

13

Most Basic Sequential Logic Circuit: R-S Latch
§ Truth table for a NAND gate:

§ R-S Latch Operation:
• Next input case is called the “SET”, when inputs are: S=0, R=1

S=0

R=1

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

1st look at upper NAND gate
àIts inputs are: 0 and X (anything)
àProduces a 1 at its output

Lower NAND gate
àInputs are: 1 and 1
àProduces a 0 at its output

0
X

1

0

Next, set S=0 R=1
Check value of Q

14

8

Most Basic Sequential Logic Circuit: R-S Latch
§ Truth table for a NAND gate:

§ R-S Latch Operation:

3-15

S=0

R=1

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

Truth Table for R-S Latch:

SETs LATCH to have a “1” at the output

ACTION S R Q ~Q
0 0

SET 0 1 1 0

RESET 1 0 0 1

1 1

1

0

15

Upper NAND gate
àHas S=1 & former value of ~Q=0
àProduces a 1 at its output

(same ~Q as when it started)
Lower NAND gate
àInputs are: 1 and 1
àProduces a 0 at its output (same Q)

Most Basic Sequential Logic Circuit: R-S Latch
§ Truth table for a NAND gate:

§ R-S Latch Operation:
• Last valid input case is the “HOLD” S=1, R=1

o If we have just “SET” Latch, we will have Q=1, ~Q=0, already on outputs

S=1

R=1

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

1
0

1

0

16

9

Most Basic Sequential Logic Circuit: R-S Latch
§ Truth table for a NAND gate:

§ R-S Latch Operation:

S=1

R=1

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

Truth Table for R-S Latch:

HOLD’s value we “SET” last

ACTION S R Q ~Q
0 0

SET 0 1 1 0

RESET 1 0 0 1

HOLD 1 1 1 0

1

0

Next, set S=1 R=1
Check value of Q

17

Storage - Cross-Coupled NANDs (R-S Latch)

§ Set value of Q by R=0 or S=0
§ Store value of Q with R=1, S=1
§ What happens with S=0 and R=0?

• Short answer: confusion
• Real circuits depend on both Q and ~Q
• Strange things may happen if both are 1

D-Latches shows a way to prevent
the RS Latch from ever getting S=R=0 as its input

S

R

Q1

0

0

1~Q

ACTION S R Q ~Q
ILLEGAL 0 0 1 1
SET 0 1 1 0

RESET 1 0 0 1

HOLD 1 1 1 0

HOLD 1 1 0 1

18

10

Circuits with Memory

• We now have a device (RS Latch) that is capable of storing a bit
• It hold the previous value of Q

• but need to make sure the inputs are never R=S=0
• Modify the circuit to get a D latch

19

Gated D-Latch: Preventing “Illegal State” of RS Latch

§ Add logic to an R-S latch
• Create a more convenient interface (1) prevent S=0 && R=0 and (2) control

when you can “write” into storage

§ Two inputs: D (data) and WE (write enable)
• When WE = 1, latch is set to value of D

o S = NOT(D), R = D

0

1

10WED

Q

11

S

R

D=1 && WE=1
So Q=1

20

11

Gated D-Latch: Preventing “Illegal State” of RS Latch

§ Add logic to an R-S latch
• Create a more convenient interface, prevent S=0 && R=0

§ Two inputs: D (data) and WE (write enable)
• When WE = 1, latch is set to value of D

o S = NOT(D), R = D
• When WE = 0, latch continues to hold previous value

o S = R = 1 (hold condition for SR latch)
• Extra logic does not allow S=0, R=0 case to occur

1

1

01WED

Q

00

S

R

0 was held from
last state

Q no longer follows
D, when WE=0

21

D-Latch Timing Diagram
• The diagram below is called a “Timing” Diagram

o Our D-Latch is previous-state dependent
– We can think of this as a time dependency
– Moving to the right on diagram, represents forward moving time

o The inputs & outputs to our D-Latch are on left
– Inputs/Outputs can be either “HIGH” (logic 1) or “LOW” (logic)

o Think of this as a time-dependent truth table

WE

D

Logic level =1
Logic level =0

time®

Q

22

12

D-Latch Timing Diagram
• When the WE signal is high the latch is said to be open and the output

signal, Q, follows the input signal, D.
o As in any combinational circuit there will be a small delay between the

time that the input changes and the time that the output follows suit.

WE

D

Q

open open

time®

When latch is OPEN (WE=1): Notice Q follows D

23

D-Latch Timing Diagram
• When the WE signal is low the latch is closed and the output signal, Q

retains its value.

WE

D

Q

open open

time®

When latch is CLOSED (WE=0): Notice, Q doesn’t follow D
(Instead, Q has previous value)

closed

24

13

D-Latch Timing Diagram
• Setup / Hold Times

o The input signal should (D) be stable a certain amount of time before
the WE signal is set to CLOSED (WE=0)

– This is referred to as the SETUP time
o In addition, the input signal (D) must be stable for a time after the WE is

set to CLOSED (WE=0)
– This is referred to as HOLD time

o Why? Time must be given for inputs to propagate through NAND gates!
Gates are not instantaneous!

WE

D

Q

open openclosedLogic level =1
Logic level =0

time®

25

Next… Storage Devices
• we now have a device (D-Latch) that can store a bit

• Abstract the device: input D, WE; output/storage Q

• Use this to build ‘real’ storage devices….
• Temporary storage in a computer…Register

• Where are variables stored before being sent to the arithmetic unit for
operations on them?

• Can we build an n-bit register using latches?

• What about “main” memory
• Memory hierarchy ?

D QD

WE

26

14

Question: Page 4 of Latches.cdl file
§ Describe behavior

27

Multi–Bit D-Latch: Register ?
• A collection of D-latches, controlled by a common WE
• When WE=1, 3-bit value D is written to the outputs

D QD
3 3

WE

WE

D Q0D0

WE

D Q1

WE

D Q2

WE

D1

D2

Abstraction:
3-bit D latch

28

15

Multi–Bit D-Latch – Register: Inside the latches
• A collection of D-latches, controlled by a common WE
• When WE=1, n-bit value D is written to the outputs

D2
Q2

D1
Q1

D0
Q0

D QD
3 3

WE

WE

29

A Basic Model of a Computer

0 -20

1 10

2 -7

3 8

4 3

5 9

0 ADD 0, -20, $0
1 ADD 0, 10, $1
2 SUB $0, $1, $0
3 MPY $0, $4, $5

4 ADD $0, $5, $0
5 DIV $0, 5, $0

Memory CPU Instructions

2 PC

Essential Part of Computer!

Address Data

Basic Components: Address: Looks up data
Note: both are in binary

30

16

Memory
§ We know how to store m-bit number in a register
§ How about many m-bit numbers ?

• Address space

§ How to fetch a specific m-bit number?
• addressing

31

Memory
§ Now that we know how to store bits, we can build a memory – a

logical k by m array of stored bits

••
•

k = 2n
locations

Address Space:
number of locations
(usually a power of 2)

m bits

Addressability:
number of bits per location
(e.g., byte-addressable)

32

17

Memory: Address space and total size

§ Address Space

n bits allow the addressing of 2n memory locations.

• Example: 24 bits can address 224 = 16,777,216 locations

(i.e. 16M locations).

• If each location holds 1 byte (= 8 bits) then the memory is 16MB.

• If each location holds one word (32 bits = 4 bytes) then it is 64 MB.

§ Total size of memory is number of locations multiplied by number of bits m at

each location = Address Space * Addressability = 2n * m

A large number of addressable fixed size locations

33

Memory - Addressability

• Computers are either byte or word addressable
o - i.e. each memory location holds either 8 bits (1 byte), or a full standard

word for that computer (16 bits for the LC-3, more typically 32 bits, though
now many machines use 64 bit words).

• Normally, a whole word is written and read at a time:

• If the computer is word addressable, this is simply a single address location.

• If the computer is byte addressable, and uses a multi-byte word, then the word
address is conventionally either that of its most significant byte (big endian

machines) or of its least significant byte (little endian machines).

34

18

Memory Interface
§ There are two basic operations on a memory

§ Selecting one of the memory locations to read from
§ Selecting one of the memory locations to write to

§ Interface signals
§ A: n-bit address lines to select/specify a location
§ Dout : Contents of selected location during read (m bits)
§ Din : Value to be stored during write (m bits)
§ WE : If WE = 1 then write operation, WE = 0, read operation

Memory
(2n by m-bit)

A
n

Din

WE

Dout

m m

35

Memory

§ Looking from the outside, what do we need?
§ READ operation: Given address A of N bits, fetch contents at that

address
• From 2N locations we select one of them to be sent to the output

§ WRITE: Given address A of N bits, write into exactly one of the 2N

locations.

OUT

INADDR

WE

36

19

Question: Page 5 of Latches.cdl file
§ Describe behavior

37

Question: Devices to construct Memory ?
• 1. Do you have a device to store a m-bit number ?

• 2. For READ: do you have a device that can send one out of 2N

inputs (inputs are in the 2N latches) ?

• 3. For WRITE: do you have a device that can enable exactly one
Write Enable (WE) in the 2N D-latches ?

38

20

Question: Devices to construct Memory ?
• Memory is a 2N by m array:

• 2N rows – each row/location address specified using N bits
• Each row has/stores m-bits

• 1. Do you have a device to store a m-bit number ?
• How many of them do you need for the entire 2N by m memory ?

• 2. For READ: do you have a device that can send one out of 2N

inputs (inputs are in the 2N latches/registers) ?
• We have 2N ‘registers’ each of m bits
• Need to be able to send (read) contents from exactly one of these

• 3. For WRITE: do you have a device that can enable exactly one
Write Enable (WE) in the 2N D-latches ?

39

Example: 22 by 3-bit memory

D0
3 3

D1
3 3

D2
3 3

D3
3 3

M
U

X

3
Dout

A
2§ Read operation

22 or 4 registers
each is 3-bits

Selects “address” to read

But how do we
select/enable ONE
of the D-latches to

send to the output?
Given 2 bit address,

Select ONE latch

Address bits
are select lines

to MUX

40

21

Example: 22 by 3-bit memory

D0
3 3

D1
3 3

D2
3 3

D3
3 3

M
U

X

3
Dout

A
2§ Write operation

WE

3
Din

D
ec

od
er

Limitation:
You can only read

or write at any given
time

Use 2-4 Decoder:
Input address bits= A,
exactly one D-latch
has WE=1

How do we enable write into
exactly one memory location

41

22 by 3-bit memory - Multiple “Ports”

D0
3 3

D1
3 3

D2
3 3

D3
3 3

M
U

X

3
DR

AR
2

§ Independent Read/Write

WE

3
DW

D
ec

od
er

AW
2

You can read from one
address AR and write to

another AW with this
arrangement

(notice 1 address line for R
1 address line for W)

42

22

22 by 3-bit memory - Multiple Read Ports

D0
3 3

D1
3 3

D2
3 3

D3
3 3

3
DR2

AR2
2

WE

3
DW

D
ec

od
er

AW

3
DR1

AR1
2

2

Read from 2 locations
AR1, AR2 at once,

Write to a third AW !
(notice 3 address lines)

(We will use this later
In something called the:

“register file” for the CPU)

43

More Memory Details
§ This is still not the way actual memory is implemented

• Real memory: fewer transistors, denser, relies on analog properties

§ But the logical structure is similar
• Address decoder
• Word select line, word write enable
• Bit line

§ Two basic kinds of RAM (Random Access Memory)
§ Static RAM (SRAM) - 6 transistors per bit

• Fast, maintains data as long as power applied

§ Dynamic RAM (DRAM) - 1 transistor per bit
• Denser but slower, relies on “capacitance” to store data, needs constant

“refreshing” of data to hold charge on capacitor

Also, non-volatile memories: ROM, PROM, flash, …

44

23

Dynamic RAM
• Information stored as charge on

capacitors.
• Capacitors leak so values have

to be ‘refreshed’ continually
• As memory chips get larger,

access times tend to increase.
The processor spends more time
waiting for data.
ØThis is a major issue limiting

computer systems performance

45

Speed mismatch: Example
§ Intel Core i5 – Processor

• Clock rates approx 2.5GHz, Clock period approx 0.4 ns

§ DDR2-667 PC2-5300 SO-DIMM – 2 GB Memory
• Can deliver at most 1 64-bit word every 1.5 ns

§ Mismatch between processor speed and memory speed

46

24

Memory Hierarchy
• Modern computers try to mitigate memory delays by exploiting locality

of reference through caches.
• Smaller, faster memory stores are placed closer to the CPU and bulk

transfers from slower memory are used

CPU

Cache
Memories

Main Memory

Disks
Magnetic, Flash etc.

Storage in MegaBytes,
access times single clock cycles

Storage in GigaBytes,
access time 10s of clock cycles

Storage in TeraBytes,
access time 1000s of clock cycles

47

Next: Design process for Sequential Circuits –
Finite State Machines

• Recap: we now have a set of devices capable of storing bits
• D-latch, Register, Memory (?),…

• Definition of sequential circuits
• Components of a sequential circuit

• synchronization using a CLOCK
• Modifying latches to work with a clock…Flip Flops
• Flip Flops are the basic unit of storage in sequential circuits

• Designing sequential circuits – methodology ?
• Finite state machine diagrams
• Mapping to truth table…..build circuit

48

25

Next: Design process for Sequential Circuits –
Finite State Machines

• Definition of sequential circuits
• Components of a sequential circuit

• synchronization using a CLOCK
• Modifying latches to work with a clock…Flip Flops
• Flip Flops are the basic unit of storage in sequential circuits

• Designing sequential circuits – methodology ?
• Finite state machine diagrams
• Mapping to truth table…..build circuit

49

