
1

Data Structures, Dynamic
Memory allocation & the
Heap

(Chapter 19)

1

3

Quick Review: Structures in C
• Programs are solving a ‘real world’ problem

• Entities in the real world are real ‘objects’ that need to be represented
using some data structure
§ With specific attributes

• Objects may be a collection of basic data types
• In C we call this a structure

3

2

4

Example..Structures in C

• represent all information pertaining to a student
char GWID[9],char lname[16],char fname[16],float gpa;

• We can use a struct to group these data together for each student, and use
typedef to give this type a name called student
struct student_data {

char GWID[9];
char lname[16];
char fname[16];
float gpa
};

typedef struct student_data {
char GWID[9];

char lname[16];
char fname[16];
float gpa
} student;

student seniors; // seniors is
var of type student

4

5

Arrays and Pointers to Struct
•We can declare an array of structs

student enroll[100];
Enroll[25].GWID=‘G88881234’;

•We can declare and create a pointer to a struct:

student *stPtr; //declare pointer to student type
stPtr = &enroll[34]; //points to enroll[34]

•To access a member of the struct addressed by Ptr:

(*stPtr).lname = ‘smith’; //dereference ptr and
access field in struct

•Or using special syntax for accessing a struct field through a pointer:

• stPtr-> lname = ‘smith’;

5

3

6

Passing Structs as Arguments
•Unlike an array, a struct is always passed by value
into a function.

• This means the struct members are copied to
the function’s activation record, and changes inside the function
are not reflected in the calling routine’s copy.

•Most of the time, you’ll want to pass a pointer to a struct.

int similar(student *studentA, student *studentB)
{
if (studentA->lname == studentB->lname) {

...
}
else
return 0;

}

6

7

Dynamic Allocation
•Suppose we want our program to handle
a variable number of students – as many as the user wants to enter.

• We can’t allocate an array, because we don’t know the
maximum number of students that might be required.

• Even if we do know the maximum number,
it might be wasteful to allocate that much memory
because most of the time only a few students’ worth of data is needed.

• Another example: linked list
•We need to keep adding/deleting nodes in the list….

§Size of the data (structure) varies during run time

•Solution:
Allocate storage for data dynamically as needed.

7

4

8

Recall: Memory Layout

• Global data grows towards
xFFFF

• Global ptr R4

• Stack grows towards zero
• Top of stack R6
• Frame pointer R5
• ALL local vars allocated on stack

with address R5 + offset

• Heap grows towards xFFFF
• We’ve used Stack and static

area so far – where does Heap
come in ?

Stack

Code

Constant Data

Alterable Data

St
at

ic

Heap

x0000

xFFFF

8

9

Memory allocation review:
Static Memory Allocation

•In this context “static” means “at compile time”
• I.e., compiler has information to make final, hard-coded decisions

•Static memory allocation
• Compiler knows all variables and how big each one is
• Can allocate space to them and generate code accordingly

§ Ex. global array: compiler knows to allocate 100 slots to
my_static_array[100]

§ Address of array is known statically, access with LEA

#define MAX_INTS 100
int my_static_array [MAX_INTS];

my_static_array .BLKW #100 ; # 100 words, 16-bits each on LC3

9

5

10

Automatic (local variables) Memory Allocation
•Automatic (local var) memory allocation

• Used for stack frames
• Similar to static allocation in many ways
• Compiler knows position and size of each variable in stack frame

§ Symbol table generated at compile time
§ Offset values for local variables (negative values for local var)
§ Local variables have address R5 + offset

• Can generate code accordingly
• Can “allocate” memory in hardcoded chunks

§ Relative to stack pointer (R6) and frame pointer (R5)
ADD R6, R6, #-3 ;; allocate space for 3 variables

LDR R0, R5, #-2 ; loads local variable intro R0

10

11

What Is Dynamic Memory Allocation?
•“Dynamic” means “at run-time”

• Compiler doesn’t have enough information to make final decision

•Dynamic memory allocation
• Compiler may not know how big a variable is

§ Most common example…how many elements in an array
• Compiler may not even know that some variables exist

•How does it figure out what to do then?
• It doesn’t, programmer has to orchestrate this manually

•Ask for space at run-time…how ?
• Need run-time support – call system to allocate memory: provide library call

in C for users = malloc()

• where do you allocate this in memory…the Heap

11

6

12

Dynamic Allocation

•What if size (of array) is only known at run-time ?
•Dynamic allocation

• Ask for space at run-time…How?
• Need run-time support – call system to do this allocation
• Provide a library call in C for users

§ malloc()
•Where do you allocate this space – heap

12

13

Heap API
•How does programmer interface with “heap”?

• Heap is managed by user-level C runtime library (libc)
• Interface function declarations found in “stdlib.h”
• Two basic functions… malloc and free

13

7

14

Heap API: Malloc Package

•#include <stdlib.h>
•void *malloc(size_t size)

• If successful:
§ Returns a pointer to a contiguous memory block of at least t_size bytes,

(typically) aligned to 8-byte boundary.
§ If size == 0, returns NULL

– Note: void* is generic pointer (C for “just an address”)

• If unsuccessful: returns NULL (0) and sets errno.

•void free(void *p)
• Returns the block pointed at by p back to heap

§ Its now in the pool of available memory
• p must come from a previous call to malloc or realloc.

•void *realloc(void *p, size_t size)
• Changes size of block p and returns pointer to new block.

14

15

Using malloc
• To use malloc, we need to know how many bytes to allocate.
• The sizeof operator asks the compiler to calculate the size of a particular
type.
• Example: assume we want memory to store n number of students to enroll

• student is a struct
• ask for space to ‘store’ n student structures and enroll points to this space

• enroll = malloc(n * sizeof(student));

• We also need to change the type of the return value to the proper kind of
pointer – this is called “casting.”

• enroll =
(student*) malloc(n* sizeof(student));

15

8

16

Example
int num_students;
student *enroll; /* this is a local variable –

pointer to a struct */

printf(“How many students are enrolled?”);
scanf(“%d”, &num_students);

enroll =
(student*) malloc(sizeof(student) *num_students);

if (enroll == NULL) {
printf(“Error in allocating the data array.\n”);
...

}
enroll[0].lname = ‘smith’;

If allocation fails,
malloc returns NULL.

Note: Can use array notation
or pointer notation…array since contiguous memory!

16

17

free
• Once the data is no longer needed, it must be released back into
the heap for later use.
• This is done using the free function, passing it the same address
that was returned by malloc.

void free(void*);

free(enroll[0]);

• If allocated data is not freed, the program might run out of heap
memory and be unable to continue.

• Even though it is a local variable, and the values are ‘destroyed’, the
allocator assumes the memory is still in use!

17

9

18

Heap API Example
unsigned int i, num_students;
struct enroll *student; /* assume student has size 5 */

/* prompt user for number of students */
printf(“enter maximum number of students: ”);
scanf(“%u\n”, &num_students);

/* allocate student array – array size num_students of type
student*/
enroll =(student*)

malloc(num_students * sizeof(struct student));

/* do some processing with enroll – data on the heap */

/* when done processing the data, free the data on the heap */
free(enroll);

18

19

Memory Layout – Heap & Stack

19

10

20

1 Picture == 1024 Words

•malloc returns ?
• Heap region of size 10

§ (struct size =5)

ADDR VALUE SYM
x0010 0 i
x0011 2 num_students
x0012 enroll
x0013
…
x4000
x4001
x4002
x4003
x4004
x4005
x4006

x4007
x4008
x4009
x400A
x400B
x400C
x400D

“Heap” starts here

Globals

“Heap” storage doesn’t have names

Enroll=(student*)
malloc(num_students*

sizeof(student))

20

21

1 Picture == 1024 Words

•malloc returns x4002
• Heap region of size 10

ADDR VALUE SYM
x0010 0 i
x0011 2 num_student
x0012 x4002 enroll
x0013
…
x4000
x4001
x4002
x4003
x4004
x4005
x4006
x4007
x4008
x4009
x400A
x400B
x400C
x400D

“Heap” starts here

Globals

“Heap” storage doesn’t have names

21

11

22

1 Picture == 1024 Words

•malloc returns x4002
• Heap region of size 10

• what if enroll was local var ?

ADDR VALUE SYM
x0010 0 i
x0011 2 num_student
x0012 x4002 enroll
x0013
…
x4000
x4001
x4002
x4003
x4004
x4005
x4006
x4007
x4008
x4009
x400A
x400B
x400C
x400D

“Heap” starts here

Globals

“Heap” storage doesn’t have names

22

23

Example: Memory layout with heap variables

int test(int a){
int* x,B;
int i= 10;

x = (int*)malloc(1*sizeof(int));
B= (int*) malloc(2*sizeof(int));

……/* use X,B in body of function */

free(x);
return i;

}

x,B are local variables of
type pointers (to int)

malloc returns
address

x,B point to
these addresses

on the Heap

Free memory pointed to by x

23

12

24

State of the Memory:

Address Content Value

3000

3001

3002

3998 i 10

3999 B

4000 x

int test(int a){
int* x,B;
int i= 10;
…HERE….
x = (int*)malloc(1*sizeof(int));
B= (int*) malloc(2*sizeof(int));
……
free(x);
return i;
}

R5
(frame ptr for function test)

Heap starts at
#3000

x, B are local vars of type pointer
in Function test..
Allocated on stack

24

25

Malloc & local vars
Address Content Value

3000 *x

3001 *B:
B[0]

3002 B[1]

3998 i 10

3999 B 3001

4000 x 3000

int test(int a){
int* x,B;
int i= 10;
x = (int*)malloc(1*sizeof(int));
B= (int*) malloc(2*sizeof(int));
……HERE…
free(x);
return i;
}

R5
(frame ptr for function test)

Heap starts at
#3000

x, B are local vars of type pointer
in Function test..
Allocated on stack

but to addresses on Heap

25

13

26

Malloc, free & memory leaks
Address Content Value

3000

3001 *B:
B[0]

3002 B[1]

int test(int a){
int* x,B;
int i= 10;
x = (int*)malloc(1*sizeof(int));
B= (int*) malloc(2*sizeof(int));
…

free(x);
return i; }
…HERE…

R5
(frame ptr for function test)

Heap starts at
#3000

• After function returns
• x was freed, B was not!

• Stack does not contain local var
x,B

• Heap still thinks B[0],B[1] are
being used

Program no longer has
pointers that can access this space…

Memory leak !

Check your code for mem leaks….
Valgrind !

26

27

Questions ?
• Work through HW5 : Capture state of memory through code
execution

• function call and return
• global, stack and heap

• (and code generation)

27

14

Dynamic Data Structures

Super fast Review !

28

29

dynamic data structures …review

• Example 1: Linked List
• Read example in textbook (or review your code from prior classes)

• Example 2. Dynamic arrays
• Example 3. Hash Tables

• Project 5 and HW6

• Project 5 – a “search engine”
• Read documents in a directory
• Enter a search phrase and find the most relevant document
• Under the hood: build a hashmap

§ HW6 code….or CS2113 hashmap code

29

15

Example 2:
Dynamic Arrays & Multi-
dimensional arrays

36

37

Dynamic arrays
•Don’t’ know size of array until run time

•Example: store an array of student records
• Do not know number of students until run time
• Size if specified by user at run-time

• Using static array of max size is a bad idea
§ Wasting space

37

16

38

Static 1-D Arrays
int ia[6];

ia

• ia[4] means *(ia + 4)

• Observe: ia is a pointer to a contiguous block of memory
locations

38

40

Pictorially

?

D1
1-D Array D1[n] – n known at run-time

Type of D1 = pointer to <arraytype>

Call malloc() and ask for space for n blocks
How much: n * sizeof(type)

Once allocated, access D1 as you would an array:
D1[i] accesses element i in array

Once you are done, free(D1)

40

17

41

1-D Dynamic Array allocation
•Example 1-D dynamic array: D-array1.c
•C-code: download (from webpage) and go over the code
Outline:

• Prompt user for size of array, call function allocarray to malloc space
for the array, return to main and work on the array

• Declare dynamic array variable – pass this to function
• Call function allocarray: this function calls malloc to allocate space for

the array
§ type returned by function: pointer to int

– Pointer to a block of ints….array
§ Arguments to the function: size of array

41

42

Static 2-D array Declaration
int ia[3][4];

Type
Address

Number
of Rows

Number
of Columns

Declaration at compile time
i.e. size must be known

42

18

Recall: pointers and arrays
• One Dimensional Array

int ia[6];
• Address of beginning of

array:
ia º &ia[0]

• Two Dimensional Array
int ia[3][6];

• Address of beginning of
array:

ia º &ia[0][0]
• also
• Address of row 0:

ia[0] º &ia[0][0]
• Address of row 1:

ia[1] º &ia[1][0]
• Address of row 2:

ia[2] º &ia[2][0]

43

44

2-D dynamic arrays
•We do not know #rows or #columns at compile time

• Need to prompt user for this info

•How did 1-D arrays work?
• Pointer to block of words
• Block of words is the array

•How can we extend this
• Pointer to 1-D array of “rows”
• Each entry in this array is a pointer to the row

§ How many elements in the row = number of columns

44

19

45

Pictorially

?

D1: Pointer to 1-D array

Each entry is an integer (or some other type)

45

46

Pictorially: 2-D array

rows ?

D2: Pointer to 2-D array

But now each entry is a pointer to a block (row)
of integers (or some other type)

How many such pointers = number of rows
How many blocks of ints (or other) does
each point to ? ..number of columns

46

20

47

Pictorially

rows

colsD2 is pointer to 2-D array:
type = pointer to pointer **(array type)

array of
pointers

47

48

D2[2][3] = 17;

rows 17

colsD2

48

21

49

2-D Dynamic Array allocation
•Example 2 2-D dynamic array: D-array2.c
Outline:

• Prompt user for size of array, call function allocarray to malloc space for the
array, return to main and work on the array

• Declare dynamic array variable – pass this to function
§ This is a pointer to a pointer – i.e, **int

• Fill in function allocarray: this function calls malloc to allocate space for the
array
§ Determine type returned by function
§ Arguments to the function

• Don’t forget to free
§ Think about how to free all the space used by 2-D array

49

50

Okay…practice what you learnt…

•Read through 1-D dynamic array code – linked on webpage and
then use the template for 2-D arrays to write code to create 2-D
dynamic arrays

50

22

Hash Tables/Hash Map

HW 6 and Project 5

51

53

Hash functions
• Array GW[] of students

• To find student with ID x, GW[x]

• Domain of student IDs ? G followed by 8 digits
• GWID: G_ _ _ _ _ _ _ _
• 108

• Range ?

• Ideally: array of size= number of GW students
• GW[x] will be entry for student with ID x
• But this is not definition of an array!

• hash function h can be viewed as mapping the value to the array
index:

• h[name]= i
• Array[h(name)] now works like an array!

53

23

54

The Hash Table
•Designed to store (key,value) pairs
•Idea

• Take every key and apply a hash function which returns an integer – this
integer is the index of a bucket where you store that object.

• These buckets are usually implemented as linked lists so if two or more keys
hash to the same bucket they are all stored together.

• The number of elements stored in each bucket should be roughly equal to
the total number of elements divided by the total number of buckets

• Example: hash function h = modulo 4
• Maps to 4 buckets
• h(10)= 2 – input data with key=10 is placed in bucket 2
• h(15)=3 – input data with key=15 is placed in bucket 3
• h(19)=3 – input data with key=19 is placed in bucket 3

54

Hash Table
Buckets

Lists

55

24

56

Some hash table vocabulary
•Key: portion of your data that you use to map to bucket
•Value: bucket # in hash table array (aka the index #)
•Hash Function: maps key to value

• AKA: mapping function
• AKA: map
• AKA: “hashing”

•Associative Array
• What a hash table actually is: an array whose index is associated with your custom

datatype

•Collision:
• When more than 1 key maps to the same value

§ AKA: bucket contains more than 1 data item
§ We used linked list to allow collisions
§ Perfect hash function yields no collisions!

•Load factor: # of entries in table / # of buckets

•

56
56

58

Hash functions
•The purpose of this:

§ Have an exact way to “find” the data later on
§ We use hash function to “lookup” the bucket our data is in

– We use our linked lists’s “find” to search within the bucket

• If we knew we had 1000 distinct values, then h(k) will be between 1 and 1000
•Simple hash function: Modulo B for B buckets

• If B=100 then h(k) = K mod 100
•What if domain is strings and not integers

• Example: Add up ASCII values of characters in string s to get an integer x, then
apply modulo

• h(s) = x mod B
•How do you rebalance the load – extendible hashing functions

• Mod k to start with (k is power of 2)
• Mod 2k

58

25

59

How do we implement a HashTable?
•It is almost like a 2D array:

• Except the # of columns differs for each row
§ my_array [0] = {data1, data2}
§ my_array [1] = {data3}
§ my_array [2] = {data4, data5, data6}

•Under the hood, we usually do use an array
• We call the # of rows the # of “buckets” in the table
• But we usually make the columns a linked list

§ Example: my_linked_list* my_array [10]
– my_array [0] = linked_list0
– my_array [1] = linked_list1
– my_array [2] = linked_list2
– …

§ This would define an array of 10 linked lists

59

Struct_of_ints Hash Table

ß 4 Buckets

Linked Lists

Each bucket is really just
a head pointer to 4 separate
linked lists

Hash “mapping” function
tells us which “bucket” data
must go into

Linked lists hold onto data
that fits into more than 1
bucket

60

26

61

Example using struct_of_ints linked list
•we created a linked list ..let’s say of “ints”

• Let’s use them as the basis for our hash table
#include “linked_list.h”

#define BUCKETS 4
int main () {

int i, bucket ;
struct_of_ints* my_hash_tbl [BUCKETS] ;

/* think about how you may need to change to deal with
Case when number of buckets is input by the user */

printf (“Enter INT\n”) ;
scanf (“%d”, &i) ;

bucket = i % BUCKETS ; // maps key to value

// store data in hashtable

my_hash_tbl[bucket] = // we access like an array
add_to_list (my_hash_tbl[bucket], i) ;

}

61

62

Course…what remains.
• Rest of the course is mostly “C stuff”

•Topic remaining: ‘real’ memory organization and program
performance

• Simple code optimization techniques
• Final Project handed out on last day – serves as your “final”
• It is C code that you have to rewrite to improve performance AND you have

to write a detailed report…your grade depends as much on the analysis in
the report as the performance of your code.

62

27

Heap: Managing Malloc

How does it work?
What is a good malloc implementation ?

You will learn more about this in Systems Prog

63

64

Malloc Package

•#include <stdlib.h>
•void *malloc(size_t size)

• If successful:
§ Returns a pointer to a contiguous memory block of at least size bytes,

(typically) aligned to 8-byte boundary.
§ If size == 0, returns NULL

• If unsuccessful: returns NULL (0) and sets errno.

•void free(void *p)
• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc.

•void *realloc(void *p, size_t size)
• Changes size of block p and returns pointer to new block.

64

28

65

Assumptions

•Assumptions

• Memory is word addressed (each word can hold a pointer)

Allocated block
(4 words)

Free block
(3 words)

Free word

Allocated word

65

66

Allocation Examples
p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

66

29

67

Goals of Good malloc/free
•Primary goals

• Good time performance for malloc and free
§ Ideally should take constant time (not always possible)
§ Should certainly not take linear time in the number of blocks

• Good space utilization
§ User allocated structures should be large fraction of the heap.
§ Want to minimize “fragmentation”.

•Some other goals
• Good locality properties – motivation for this will be discussed later in

course
§ Structures allocated close in time should be close in space
§ “Similar” objects should be allocated close in space

• Robust
§ Can check that free(p1) is on a valid allocated object p1
§ Can check that memory references are to allocated space

67

68

Challenges & problems with Dynamic
allocation

•What can go wrong ?
•How to fix it ?

68

30

69

Memory leak
• forgot to free()

• Allocator assumes the memory is still in use

•Overwrote pointer to block…oops: cannot get to the memory
anymore

•Thumb rule:
• For every malloc there should be an associated free

• Will this solve all your problems ?
• Exercise: Try to run the code we gave last class in the inclass exercise – but

insert a free(x2) before return

69

70

Internal Fragmentation
•Poor memory utilization caused by fragmentation.

• Comes in two forms: internal and external fragmentation
•Internal fragmentation

• For some block, internal fragmentation is the difference between the
block size and the payload size.

• Caused by overhead of maintaining heap data structures, padding for alignment
purposes, or explicit policy decisions (e.g., not to split the block).

• Depends only on the pattern of previous requests, and thus is easy to measure.

payload
Internal
fragmentation

block

Internal
fragmentation

70

31

71

External Fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) oops! We have 7 free blocks
but not 6 contigious free blocks.

Occurs when there is enough aggregate heap memory, but no single
free block is large enough

External fragmentation depends on the pattern of future requests, and
thus is difficult to measure.

71

72

Implementation issues
•How to ‘collect’ all the free blocks

• How to keep track of them
• Where to insert free block
• How to determine amount of free memory ?

•Compaction ?
• Can alleviate external fragmentation problems

72

32

73

Knowing How Much to Free
• Standard method

• Keep the length of a block in the word preceding the block.
§ This word is often called the header field or header

• Requires an extra word for every allocated block

free(p0)

p0 = malloc(4) p0

Block size data

5

73

74

Keeping Track of Free Blocks

•Method 1: Implicit list using lengths -- links all blocks

•Method 2: Explicit list among the free blocks using pointers within
the free blocks

•Method 3: Segregated free list
• Different free lists for different size classes

§ Ex: one list for size 4, one for size 8, etc.
•Method 4: Blocks sorted by size

• Can use a balanced tree (e.g. Red-Black tree) with pointers within each free
block, and the length used as a key

5 4 26

5 4 26

74

33

75

What to do with sets of free blocks?
•During program run-time, blocks are no longer in use but may not
have been freed

• So need to determine blocks no longer in use
• Keeping track of free blocks allows us to navigate the memory to determine

blocks
• But when should we ‘run’ this process?

• But we still have fragmentation problem
• So what do we do…

Garbage Collection !

75

76

Implicit Memory Management:
Garbage Collection

•Garbage collection: automatic reclamation of heap-allocated
storage -- application never has to free

Common in functional languages, scripting languages, and modern
object oriented languages:
n Lisp, ML, Java, Perl, Mathematica,
n This is why you never worried about this problem in Java!

Variants (conservative garbage collectors) exist for C and C++
n Cannot collect all garbage

void foo() {

int *p = malloc(128);
return; /* p block is now garbage */

}

76

34

77

Garbage Collection
•How does the memory manager know when memory can be
freed?

• In general we cannot know what is going to be used in the future since
it depends on conditionals

• But we can tell that certain blocks cannot be used if there are no
pointers to them

•Need to make certain assumptions about pointers
• Memory manager can distinguish pointers from non-pointers
• All pointers point to the start of a block
• Cannot hide pointers (e.g., by coercing them to an int, and then back

again)

•Garbage collection process runs during program execution!

77

78

Garbage Collection: Memory as a Graph
•We view memory as a directed graph

• Each block is a node in the graph
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are called root

nodes (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.
Non-reachable nodes are garbage (never needed by the application)

And you thought graphs were not useful J
78

