

Data Type

- In a computer system, we need a representation of data and operations that can be performed on the data by the machine instructions or the computer language.
- This combination of representation + operations is known as a data type.

• The type tells the compiler how the programmer intends to use it

Prog. Languages have a set of data types defined in lang ٠ •

•	In	C:	int,	float,	char,	unsigned	int,	

binary	add, multiply, etc.
2's complement binary	add, multiply, etc.
IEEE floating-point	add, multiply, etc.
ASCII	input, output, compare
	2's complement binary IEEE floating-point

3

Number systems A number is a mathematical concept • Natural numbers, Integers, Reals, Rationals,.. Many ways to represent a number..... • Symbols used to create a representation • Example: Decimal representation uses the symbols (digits) 0,1,2...9 • Binary uses the symbols 0,1 • Roman numerals: I, II, V, X, etc. 4

Unsigned Integers						
 An <i>n</i>-bit unsigned integer rep Values from 0 to 2ⁿ-1 	rese	nts 2	2 ⁿ va	lues		
 3-bit represents 2³=8 values 	2 ²	2 ¹	2 ⁰	val		
 4-bit represents 2⁴ 	0	0	0	0	•	
	0	0	1	1		
 Max integer value 2ⁿ-1 	0	1	0	2		
	0	1	1	3		
	1	0	0	4		
	1	0	1	5		
	1	1	0	6		
	1	1	1	7		

- 4 bit representation of -2 in
 - Signed magnitude binary
 - $\,\circ\,$ First represent 2 in binary: 0010
 - \circ Since negative, the most significant bit (leftmost) should be=1
 - \circ Therefore -2 in signed magnitude binary is: 1010
 - 1's complement binary first represent 2 in binary= 0010
 - $\circ\,$ Complement all the bits to get 1101

	nal (Ba	ase-16) No	otation		
More comp	act and	convenient th	nan binary (b	ase-2)	
 Fewer digits 	s: group fo	our bits per hex a	digit ightarrow less err	or prone	
Just a notat	ion, not a	different mach	ine representa	ition	
 Most la 	nguages (including C and	LC-3) parse he	x constan	ts
 Sometimes 	hex numb	pers preceded w	ith x or 0x		
D'			D '		
Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	Α	10
0011	3	3	1011	в	11
	4	4	1100	С	12
0100		5	1101	D	13
0100 0101	5			-	14
	5 6	6	1110	E	14

ASCII Codes

- Represent characters from keyboard
 - This encoding used to transfer characters between the computer and all peripherals (keyboard, disk, network...)
- Typing a key on keyboard = corresponding 8-bit ASCII code is stored and sent to computer
 - The computer has to interpret the ASCII code and 'extract' the character represented by the code

 Most programming languages have this feature built-in (ie., compiler figures it out for you)

7 bit k	oinary	Hex	character	7 bit b	inary	Hex	character	
011	0000	30	0	100	0101	45	E	
011	0001	31	1	110	0101	65	e	
010	0001	21	!	010	0000	20	space	
010	0011	23	#	000	1010	0A	linefeed	
								40

Table: AS	SCI		od	es												
■ASCII: Maps	128	char	acte	ers	to 7	′-bit	t co	de.								
•																
-) dle			30	0	40	(a	50	P	60		70	p		
		dc1		1	31	1	41	A	51	0	61	a	71	a		
02 st	x 12	2 dc2	22		32	2	42	в	52	R	62	b	72	r		
03 et	x 13	dc3	23	#	33	3	43	с	53	s	63	с	73	s		
04 ec	ot 14	dc4	24	\$	34	4	44	D	54	т	64	d	74	t		
05 er	11 15	5 nak	25	8	35	5	45	Е	55	υ	65	е	75	u		
06 ac	2k 16	5 syn	26	8	36	6	46	F	56	v	66	f	76	v		
07 be	1 17	7 etb	27	1	37	7	47	G	57	W	67	g	77	w		
08 b	s 18	3 can	28	(38	8	48	н	58	х	68	h	78	x		
09 h	t 19	em	29)	39	9	49	I	59	Y	69	i	79	У		
0a <u>n</u>	1 1a	a sub	2a	*	3a	:	4a	J	5a	z	6a	j	7a	z		
0b v	t 11	esc	2b	+	Зb	;	4b	к	5b	[6b	k	7ь	-{		
0c n	p 1c	fs fs	2c	,	3c	<	4c	L	5c	١	6c	1	7c	1		
0d c	r 16	i gs	2d	-	3d	=	4d	М	5d	1	6d	m	7d	}		
0e s	0 1e	e rs	2e		3e	>	4e	N	5e	^	6e	n	7e	~		
Of s	i 1f	us	2f	1	3f	?	4f	0	5f	_	6f	0	7£	del		
how to handle more than 128 characters? Unicode representation											41					

Exercises...at the tables....write on the page and submit before leaving class.

- 3. What is the 6-bit 2's complement representation of 13?
- 4. What is the 6-bit 2's complement representation of -13?
- 5. What is the decimal equivalent of the 6 bit 2's complement number 111110 ?

0 1 1 1 1 1 0	1 1 0 1 1	1 0 1	0 1 0	1 0 1	0 1 1 0	1 1 0 1	1 0 0	
1	0	1	0	1	1	0	0	
1	1	1	-				_	
	-	-	0	1	0	1	1	
	-	-	0	1	0	1	1	
0	1							
	-	1	1	0	1	0	1	
1	1	1	1	0	1	0	1	
 Shift Left: 								
pty :	spots	with	n a O					
-				oty spots with a 0		oty spots with a 0 seful for sign extension!)		

Multiplication	235 * 24
235 * 24	940
$= 235^{*}4^{*}10^{0} + 235^{*}2^{*}10^{1}$	470-
 235*4 = 235 + 235 + 235 + 235 = 940 i.e., repeated addition = 940 	 5640
 235*2 = 235 + 235 • = 470 	
 235*2* 10¹ = 4700 i.e, shift left once (one digit point of the second secon	ed once left os
	48

Overflow	
 If the numbers are too large, then we cannot represent the sum us same number of bits. For 2's complement, this can only happen if both numbers are posior both numbers are negative. 	-
$\begin{array}{cccccccc} 01000 & (8) & 11000 & (-8) \\ + & 01001 & (9) & + & 10111 & (-9) \\ \hline 10001 & (-15) & 01111 & (+15) \end{array}$	
 How to test for overflow: Signs of both operands are the same, AND Sign of sum is different. 	
 Another test (easier to perform in hardware): Carry-in to most significant bit position different than carry-out. 	n is

Sign Extension									
To add two numbers, we number of bits.	e must represent them with the same								
But if we just pad with integers:	But if we just pad with zeroes on the left, won't work for negative integers:								
■Solution: replicate the	MS bit the sign bit:								
<u>4-bit</u>	<u>8-bit</u>								
	00000100 (still 4)								
1100 (-4)	11111100 (still -4)								
Question to th	hink about: why does this work?	55							

Bitwise Logical Operations			
 View n-bit field as a collection of n logical Apply operation to each bit independently Division AND as a full for elegation bits 	l values AND	11000101 00001111	
 Bitwise AND: useful for clearing bits AND with zero = 0 AND with one = no change 	AND_	00000101	-
 Bitwise OR: useful for setting bits OR with zero = no change OR with one = 1 	OR_	00001111 11001111	_
 Computers don't support individual bits as a data Just use least significant bit of n-bit integer Integers are generally more useful 	type		
			61

Bitwise Operators in C

- Can only be applied to integral operands
- that is, char, short, int and long
- (signed or unsigned)
 - & Bitwise AND
 - Bitwise OR
 - ^ Bitwise XOR
 - << Shift Left
 - >> Shift Right
 - ~ 1's Complement (Inversion)

64

What next	
 The hardware building blocks and their operations – Chapter 3 Digital Logic structures Basic device operations: CMOS transistor Combinational Logic circuits 	
	71

Additional notes not covered during lecture

Signed Magnitude			
■ 5-bit number	-4	10100	
Leading bit is the sign bit	-3	10011	
	-2	10010	
Y = "abc" = (-1) ^a (b.2 ¹ + c.2 ⁰)	-1	10001	
Range is: $-2^{N-1} + 1 < i < 2^{N-1} - 1$	-0	10000	
	+0	00000	
	+1	00001	
	+2	00010	
	+3	00011	
	+4	00100	
			74

One's Complement			
Invert all bits	-4	11011	
	-3	11100	
If msb (most significant bit) is 1 then the number is negative (same as signed magnitude)	-2	11101	
	-1	11110	
	-0	11111	
Range is: -2 ^{N-1} + 1 < i < 2 ^{N-1} - 1	+0	00000	
	+1	00001	
	+2	00010	
	+3	00011	
	+4	00100	
		75	

