
1

EXAMPLE: BASIC CPU
DATAPATH & CONTROL

1

Adder/Subtracter

CarryIn

S
16A

16

16
B 16

Add/Sub
1

16-bit Adder/Subtracter (simplified ALU)

• A Basic Arithmetic Logic Unit (ALU) allows us to do two
operations + / - on 16 bit values.

• Inputs: A, B, Add/Sub
• Outputs: S
• Data inputs: A & B, “Control” inputs: Add/Sub

2

2

Address Space, k= 23 = 8, or 8 drawers
Addressability, m=16 bits, or 2 bytes in each drawer

23 by 16-bit Memory: Two Read Ports, One Write
(Register File)

D0
16 16

D1
16 16

D2
16 16

D7
16 16

16
DR2

AR2
3

WE

16
DW

D
ec

od
er

AW

16
DR1

AR1

3

3

. .
.

.

Recall, this memory can read
2 addresses and write to a 3rd
on the positive edge of CLK

AR2
3

WE
16

AW
3

23 x 16-bit
Memory

“Register
File”

AR1

16 DR2

16 DR1

DW

3

Simple Processor: Datapath

• This is the “datapath”
• Literally, the path through which data values travel

• What controls the flow of data through this datapath?

Putting Register File together with ALU:
• Our first CPU! Really just a glorified finit state machine!

16 16
16

23 x 16-bit
Memory

“Register
File”

+/–

4

3

16

AR2
3

WE
16

AW

16

AR1
3

3
23 x 16-bit
Memory

“Register
File”

+/–

+/–

Simple Processor: Datapath w/Control

2n x k-bit
Memory

“Control”

k

ALUout

These are the “control” signals (The lines in red)
• The signals needed to control the flow of data along the datapath

Notice, we added a second “Memory”
This memory will hold values for the control signals

i.e.: AR1, AR2, AW, WE, +/-

Putting Register File together with ALU:

5

A Useful Analogy
• The datapath corresponds to the tracks in a railway

o pathways that allow you to move information around the CPU
• The control signals control the switches that connect tracks

o Signals that setup the pathways so data can flow through CPU

6

4

16

AR2
3

WE
16

AW

16

AR1
3

3
23 x 16-bit
Memory

“Register
File”

+/–

+/–

Simple Processor: Example: Add two #s

2n x k-bit
Memory

“Control”

k

ALUout

Our register file has 23=8 DFF Registers within it:
• Let’s say we wish to add the contents of Regfiles: Reg1 to Reg2
• Then store the result in Reg3. (akin to a program: a=b+c in Java)

How would we set the “control” lines?
+/- = 0 (to indicate an add)
AR1 = 001, AR2 = 010, AW = 011, WE = 1 (to store result)

The settings for the control lines, come out of the control memory:
k is then 11 bits wide (in this case) and equals: 0 001 010 011 1

7

To ADD contents of R1+R2, control memory must contain:

If “row0” of the control memory had these 11-bits in it
Our ALU would perform an ADD of
R1+R2 and write the results to R3

16

AR2
3

WE
16

AW

16

AR1
3

3
23 x 16-bit
Memory

“Register
File”

+/–

+/–

Simple Processor: Example: Add two #s

2n x k-bit
Memory

“Control”

k

ALUout

+/– AR1 AR2 AW WE
0 001

(R1)
010
(R2)

011
(R3)

1

8

5

Simple Processor: Limitation
• Register File

• Contains DATA our processor operates upon
• Control Memory

• Holds control signals for our processor
• In essence – holds the “program” we want our CPU to execute

• Limitation in our Simple Processor Model…
• If we had a program with more than 1 instruction: a=b+c…

o How could we advance to the next row of control Memory?
– We need a device to tell us what ‘row’ of our program we are on

• In the next slide, we’ll try to fix this limitation…

9

BASIC CPU
W/ PROGRAM COUNTER

10

6

16

AR2
3

WE
16

AW

16

AR1
3

3
23 x 16-bit
Memory

“Register
File”

+/–

+/–

Simple Processor w/Program Counter (PC)

2n x k-bit
Memory

“Control”

k

ALUout

PC
n

We’ve added a new register (PC) to our CPU
-Holds the row # of the control memory we are on

We’ve also attached an incrementer…to make a counter
-Advances us 1 row of control memory at each clock pulse
-PC=PC+1 (just means go to next line in control mem)Program Counter

(points to current row in
control memory)

+1
n

11

Simple Processor w/PC - Limitations
• Register File

• Contains DATA our processor operates upon
• Control Memory

• Holds control signals for our processor
• In essence – holds the “program” we want our CPU to execute

• PC
• Holds “state” of our system
• Essentially tells us what row of control memory to lookup

• Limitation in our Simple Processor w/PC Model…
• This system is great if our programs run one line after another
• But what if we don’t want to execute the program in order?

o Can we add hardware to enable IF/THEN capability?
o Want hardware that allows us to jump around in our program

12

7

ENHANCED CPU
IF/THEN/WHILE

13

Enhanced Processor /w PC & Tester Circuit

16

AR2
3

WE
16

AW

16

AR1
3

3
23 x 16-bit
Memory

“Register
File”

+/–

+/–

n

2n x k-bit
Memory

“Control”

NextPC
TEST
1

0

n
n

PC
n

k

3NZP

+1

New “TEST”
circuit to

evaluate output
of ALU

ALUout

Also, two new control lines: NZP and NextPC, controls TEST box

14

8

What does the TEST circuit do?
• Ultimately…control the next value for the Program Counter

• Tests output of ALU, for some condition: NZP
• If condition is TRUE, PC=NextPC (jump to another line like: 100)
• If condition is FALSE, PC=PC+1 (go to next line: 000+001=001)

+/–

NextPC
TEST
1

0

n
n

PC
n

3NZP

+1

ALUout

to control
mem

ß to reg File

100

Is ALUOut > 0 ?

000

001

n

15

Why do we want a TEST circuit?
• Gives CPU ability to make decisions at runtime

• Skip over instructions in control memory
• Loop / repeat instructions in control memory

• Examples:

• Values of variables (a,b) may not be known until program is running

if (a>b) {
// do something

} else {
// otherwise skip here

}

while (a>b) {
// repeat these lines

}

16

9

How do we Implement Comparisons?

• We use ALU / Tester circuit / MUX to perform comparison…example:
• Step 1: perform subtraction: a-b (ALU can do this)
• Step 2: judge output of ALU: (Tester does this)

• If a-b < 0, then a is smaller than b
• If a-b = 0, then a is equal to b
• If a-b > 0, then a is greater than b
• Basic question for Tester: did subtraction produce a…

• Negative, Zero, or Positive number (NZP)
• Step 3: Jump to a line of program based on result of comparison

• If a>b, then PC=PC+1 (MUX does this)
• If a<=b, then PC=some new value

while (a>b) {
// repeat these lines

}

17

Anatomy of a Comparison w/Enhanced Processor

16

AR2
3

WE
16

AW

16

AR1
3

3
23 x 16-bit
Memory

“Register
File”

+/–

+/–

n

2n x k-bit
Memory

“Control”

NextPC
TEST
1

0

n
n

PC
n

k

3NZP

+1

Perform subtraction
here:

Perform comparison
here

Results of comparison
govern next input

to PC

Set desired
comparison:

>, <, ==

18

10

Let’s Define Behavior of Our “TEST” Circuit
• Want a circuit that can determine if output of ALU is: +, - or 0
• (OR MORE than 1 of those conditions: e.g.: >=0)

• Inputs/Outputs/Behavior:
•

TEST

16

to test

Condition to test # for
is # to test: -
is # to test: 0
is # to test: +

(Or some combination) 1

Result of Test
0 = condition was false
1 = condition was true

3

19

Example of “TEST” Circuit in operation
• Let’s test a 16-bit # to see if it is POSTIVE
• Let’s say ALU outputs: 0000000000000000

• Example In/Out:
•

TEST

16

to test:
0000000000000000

Condition to test # for
0
0
1

1

Result of Test
0

Output of 0 indicates, condition was false,
The # to test was not positive

N
Z
P

>0

20

11

Example of “TEST” Circuit in operation
• Let’s test a 16-bit # to see if it is ZERO
• Let’s say ALU outputs: 0000000000000000

• Example In/Out:
•

TEST

16

to test:
0000000000000000

Condition to test # for
0
1
0

1

Result of Test
1

Output of 1 indicates, condition was true,
The # to test was indeed equal to 0

N
Z
P

==0

21

Example of “TEST” Circuit in operation
• Let’s test a 16-bit # to see if it is POSITIVE (OR) ZERO
• Let’s say ALU outputs: 0000000000000000

• Example In/Out:
•

TEST

16

to test:
0000000000000000

Condition to test # for
0
1
1

1

Result of Test
1

Output of 1 indicates, condition was true,
The # to test was POSITIVE (OR) ZERO

N
Z
P

>=0

22

12

ENHANCED CPU
INSIDE NZP TESTER

23

Implementing the NZP TEST Component:
• 4 inputs:

• # to test ß (1) 16-bit input
• N, Z, P ß (3) 1-bit inputs Condition to test for from USER

• 1 output:
• Result of Test ß 1-bit output 0=Condition from user is FALSE, 1 if TRUE

• Two internal parts to the TEST component
• 1) Determine if incoming # is Negative/Zero/Positive
• 2) Compare incoming condition from user to output of part 1)

TEST

16
to test

1

Result of Test

N
Z
P

Condition
to test for

from USER

Comes from ALU

24

13

Implementing the NZP TEST Component (Part 1):
• Two internal parts to the TEST component

• 1) Determine if incoming # is Negative/Zero/Positive

(Part 1)
Determine if

is: -/+/0

to test:

Output of PART 1:
If # is negative, Ni=1
If # is zero, Zi=1
If # is positive, Pi=1

Only 1 line can be high at a time

16

Ni Zi Pi

(Part 1)
You get to implement

this for HW!

25

Implementing the NZP TEST Component (Part 2):
• Two internal parts to the TEST component

• 1) Determine if incoming # is Negative/Zero/Positive
• 2) Compare incoming condition from user to output of part 1)

6-26

(Part 1)
Determine if

is: -/+/0

Ni Zi Pi

to test:
16

(Part 1)
You get to implement

this for HW!

Result of Test

N
Z
P

Condition
to test for

from USER
(Part 2)

Compares USER
Condition

to output of Part 1

Ex: 10…01

1
1
0

1 0 0

1 0 0

1
User asked if # was negative

Or zero…
Output indicates it was one of those two

Is (# to test <= 0)?

26

14

ENHANCED CPU
& THE VON NEUMANN MODEL

27

What Else Can Our CPU Do?
• Not much…

• We still need memory
• 8 16-bit words is not enough to do anything interesting
• Storage space for large data structures

28

15

Enhanced Processor: Data Memory

16

AR2
3

WE
16

AW

16

AR1
3

3
23 x 16-bit
Memory

“Register
File”

+/–

+/–

n

2n x k-bit
Memory

“Control”

NextPC
NZP
1

0

n
n

PC
n

k

3NZP

+1

2n x 16-bit
Memory

“Data”

16

16

0

1

With “Data Memory”, we can now load register file with data!

29

Project: Processor Design
• Design a ‘mini’ processor

• Datapath and Control path

• You are given a set (subset of a real set) of instructions

• Design ALU, Memory
• Design datapath
• Design control path and ‘microprogram’ or FSM to control the

executions

• Test your logic component using Cedar Logic
• Provide a final paper design/schematic

30

