
1

LC3 Assembly Programming

1

2

Recap: LC3 ISA
§ LC3 is a 16 bit processor
§ 15 opcodes, 8 registers
§ Unique encoding for each instruction
§ Dataflow diagram for each instruction = how each instruction is

implemented/executed
• Languages to specify dataflow:

o RTL (Register transfer language) ..used by gcc compilers
o Hardware description languages (Verilog, VHDL)

§ Given a segment of machine code = corresponds to instructions
in a program

§ After exam: design of LC3 datapath
• Implementing Central Processing Unit (CPU) using the combinational and

sequential devices at our disposal.

2

2

3

Assembly Language:
Human-Readable Machine Language

§ how painful was it to read (/write) machine instructions ?
§Computers like ones and zeros…

§ Humans like symbols…

§Assembler is a program that turns symbols into
machine instructions.

Inclass Code:
LD R2, X ; R2= X, X contained #5
ADD R1, R2, # -8 ; R1= R2 -8
BRnz someplace

0001110010000110

3

4

Programming in Assembly
§ Assembly language level is one-step up from machine

• All instructions used in Assembly are actual machine
instructions….somewhat!

• Use mnemonics and address labels to make it easier to understand
the program
o Labels converted to addresses and offsets by assembler

• “macros” and utilities to make it easier
§ Assembler directives

• Tell assembler what to do without the programmer explicitly writing out
the machine code to do the task

• Allocating storage
• Initializing data

Writing program in assembly requires knowing the Instruction set !

4

3

5

LC-3 Assembly Language Syntax
§Each line of a program is one of the following:

• an instruction
• an assembler directive (or pseudo-op)
• a comment

§Whitespace (between symbols) and case are ignored.
§Comments (beginning with “;”) on one line are also ignored.

§An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

5

6

Opcodes and Operands
§Opcodes

• reserved symbols that correspond to actual (LC-3) instructions
• listed in Appendix A

o ex: ADD, AND, LD, LDR, …
§Operands

• registers -- specified by Rn, where n is the register number
• numbers -- indicated by # (decimal) or x (hex)
• label -- symbolic name of memory location
• separated by comma
• number, order, and type correspond to instruction format

o ex:
ADD R1,R1,R3 ; R1 = R1 + R3
ADD R1,R1,#3 ; R1 = R1 + #3
LD R6,NUMBER ; R6 = Mem(Address of Number)
BRz LOOP ; if previous zero go to address LOOP

6

4

7

Labels and Comments
§Label

• placed at the beginning of the line
• assigns a symbolic name to the address corresponding to line

o ex: LOOP corresponds to some specific memory address
LOOP ADD R1,R1,#-1

BRp LOOP

o ex: temp1 corresponds to a memory address – int temp1=7; ?
temp1 .FILL #7 ; temp1 = 7

§Comment
• anything after a semicolon is a comment
• ignored by assembler
• used by humans to document/understand programs
• tips for useful comments:

o avoid restating the obvious, as “decrement R1”
o provide additional insight, as in “accumulate product in R6”
o use comments to separate pieces of program

7

8

Assembler Directives
§ Pseudo-operations.. To make programmer’s life easier

•do not refer to operations executed by program

• used by assembler
• looks like instruction, but “opcode” starts with dot

Opcode Operand Meaning
.ORIG address starting address of program
.END end of program
.BLKW n allocate n words of storage
.FILL A allocate one word, initialize with

value A
.STRINGZ n-character

string
allocate n+1 locations,
initialize w/characters and null
terminator

8

5

9

Trap Codes
§LC-3 assembler provides “pseudo-instructions” for each
trap code, so you don’t have to remember them… more on
TRAP instructions later…

Code Equivalent Description
HALT TRAP x25 Halt execution and print message to console.
IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.
Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.
GETC TRAP x20 Read one character from keyboard.

Character stored in R0[7:0].
PUTS TRAP x22 Write null-terminated string to console.

Address of string is in R0.

9

10

Example Assembly Program – Add 2 to non-negative
number in memory (variable temp1) and store into
another memory location (variable temp2)
; load number from location temp1,

.ORIG x3000 ;program starts at address x3000
LD R1, temp1 ; load value from temp1 to

register R1

BRn Done ;if number is Negative goto end
ADD R3, R1, #2 ; else Add 2 and store into R3
ST R3, temp2 ; store result in R3 into temp2

Done HALT ;halt program
;
temp2 .BLKW 1 ; reserve/set aside one word in memory
temp1 .FILL x0005 ; initialize number to 5

.END ; end of program C code:
temp1 = 5;
temp2 = temp1 +2 ;

note: offset not specified by programmer
assembler calculates offset needed

10

6

11

Example Assembly Program – Add 2 to non-negative
number in memory (variable temp1) and store into
another memory location (variable temp2)
;

C code:
temp1 = 5;
temp2 = temp1 +2 ;

note: offset not specified by programmer
assembler calculates offset needed

.ORIG x3000 ;program starts at address x3000

LD R1, temp1 ;load value from temp1 to register R1

BRn Done ; if number negative then done/end

ADD R3, R1, #2 ;else add 2 to number and store into R3

ST R3, temp2 ;store result in R3 into memory loc. temp2

Done HALT ; halt program

temp2 .BLKW #1 ;reserve one word in memory

temp1 .FILL x0005 ;initialize location temp1 to 5

.END ;end of program

11

12

; assembly program for temp2= temp1 +2;
.ORIG x3000 ;program starts at address x3000
LD R1, temp1 ; temp1 is location in memory

; note: offset not specified by programmer
BRn Done ;if number is Negative goto end
ADD R3, R1, #2 ; Add 2 store into R3
ST R3, temp2 ; store result into temp2

Done HALT ;halt program
;
temp2 .BLKW 1
temp1 .FILL x0005

.END ; end of program

Immediate values/constants
Decimal #
Binary b
Hex x

.BLKW is Assembler Directive (reserve one location with label ‘temp2’)

int temp2;

.FILL is Assembler Directive (reserve one location with label ‘temp1’) and
Initialize the value there to be x0005

int temp1 =5;

Must have Opcode and Operands

Label: refers to a memory location

12

7

13

; Example Assembly Program – Add 2 to non-negative
number and store into another memory location
; load number from locations HERE,

.ORIG x3000 ;program starts at address x3000
LD R1, HERE ; location in memory

; note: replace temp1 by HERE
BRn Done ;if number is Negative goto end
ADD R3, R1, #2 ; Add 2 store into R3
ST R3, PLACE2 ; store result into PLACE2

Done HALT ;halt program
;
PLACE2 .BLKW 1 ; temp2 replaced by PLACE2
HERE .FILL x0005 ; temp1 replaced by HERE

.END ; end of program

This code would generate identical
machine code as previous with labels
temp1, temp2

13

14

Assembly Process
§Assembler: Converts assembly language file (.asm)
into an executable file (.obj) …for the LC-3 simulator in our case.

§First Pass:
• scan program file
• find all labels (variables?) and calculate the corresponding addresses;

this is called the symbol table

§Second Pass:
• convert instructions to machine language,

using information from symbol table

14

8

15

First Pass: Constructing the Symbol Table
1. Find the .ORIG statement,

which tells us the address of the first instruction.
• Initialize location counter (LC), which keeps track of the

current instruction.

2. For each non-empty line in the program:
a) If line contains a label, add label and LC to symbol table.
b) Increment LC.

– NOTE: If statement is .BLKW or .STRINGZ,
increment LC by the number of words allocated.

3. Stop when .END statement is reached.

§ NOTE: A line that contains only a comment is considered an empty line.

15

16

.ORIG x3000
LD R1, TEMP1

BRn Done
ADD R3, R1, #2
ST R3, PLACE2

Done HALT
;
temp2 .BLKW 1
temp1 .FILL x0005

.END ; end of program

Address/Location:
x3000

x3001

x3004

x3005

x3003

x3002

x3006

labels
address

16

9

17

Pass 1
§Construct the symbol table for the program

Symbol Address
Done x3004

temp2 x3005

temp1 x3006

LD R1, TEMP1 is at address x3000
PC is x3001 when this is executed…therefore offset = ??

17

18

Second Pass: Generating Machine Language
§For each executable assembly language statement,
generate the corresponding machine language instruction.

• If operand is a label, look up the address from the symbol table.
• Calculate offset from current instruction PC

o Ex: LD R1, TEMP1 is LD R1, offset #5
o Encoding: 0010 001 000000101

§Potential problems (i.e., syntax errors):
• Improper number or type of arguments

o ex: NOT R1,#7
ADD R1,R2
ADD R3,R3,NUMBER

• Immediate argument too large
o ex: ADD R1,R2,#1023

• Address (associated with label) more than 256 from instruction
o can’t use PC-relative addressing mode

18

10

19

Pass 2
§Using the symbol table constructed earlier,
translate these statements into LC-3 machine language.

Statement Machine Language
LD R1, temp1 0010 001 000000101

BRn Done 0000 100 000000010

ADD R3, R1, #2
0001 011 001 1 00010

19

20

Multiple Object Files
§An object file is not necessarily a complete program.

• system-provided library routines
• code blocks written by multiple developers

§For LC-3 simulator, can manually load multiple object files into
memory, then start executing at a desired address.

• system routines, such as keyboard input, are loaded automatically
o loaded into “system memory,” below x3000
o user code should be loaded between x3000 and xFDFF

• each object file includes a starting address
• be careful not to load overlapping object files

20

11

21

Linking and Loading
§Loading is the process of copying an executable image
into memory.

• more sophisticated loaders are able to relocate images
to fit into available memory
o must readjust branch targets, load/store addresses

§Linking is the process of resolving symbols between
independent object files.

• suppose we define a symbol in one module,
and want to use it in another (analogy: multiple files in C)

• some notation, such as .EXTERNAL, is used to tell assembler that a symbol
is defined in another module

• linker will search symbol tables of other modules to resolve symbols and
complete code generation before loading

More on Linkers and loaders in
Systems Programming next semester

21

22

Programming in assembly..
§ Style guidelines
§ Problem decomposition and mapping to assembly

22

12

23

Style Guidelines
Every program starts with .ORIG command, has HALT when
computations are done, and a .END at the end of your assembly
code.

1. Provide a program header…standard stuff

2. Start labels, opcode, operands, and comments in same column
for each line. (Unless entire line is a comment.)

3. Use comments to explain what each register does.
4. Give explanatory comment for most instructions.
5. Use meaningful symbolic names.

1. Mixed upper and lower case for readability.
2. ASCIItoBinary, InputRoutine, SaveR1

6. Provide comments between program sections.

23

24

Recap: Problem Solving and Problem
Decomposition
§ With an eye towards writing assembly programming/low-level

software

§ Flowcharts anyone ?

§ Decomposition:
• Break problem/solution into sub-problems/modules

o Structured programming
• Connect the modules…

o With conditionals, iterations, sequence,….

24

13

25

Example – similar to program tracing in Labs
§ Array of N numbers
§ Read length N of the array
§ Replace negative numbers by 0 - check condition
§ Add all the (new) numbers - iterate over array
§ Print the sum

i=N;
sum=0;
while (i>0) {

if A[i}<0 { A[i] = 0;}
sum = sum + A[i];
i = i-1;
}

Printf(”sum = %d”, sum);

25

26

Three Basic Constructs
§There are three basic ways to decompose a task:

Task

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test
condition

Subtask

Test
condition

Sequential Conditional Iterative

True

True

False
False

26

14

27

Sequential
§do Subtask 1, then subtask 2, etc.

1. Process Array of Nums
2. Change –ve to 0
3. Compute Sum of nums
4. Print Sum (to memory)

Print Sum)

Read value of N
from memory

Get start of array

Go through Array
Change –ve to 0
Compute Sum

27

28

Conditional
§If condition is true, do Subtask 1;

else, do Subtask 2.

Check if number >=0
Change –ve to 0

x < 0

x = xx = 0

Yes No

Next subtask…
(add values)

28

15

29

Iterative
§Do Subtask over and over, as long as the test condition is true.

Check each element
In array and compute sum

More
to check

Check next number
Add to sum

True

False

29

30

LC-3 Control Instructions
§How do we use LC-3 instructions to encode the three basic constructs?

§Sequential
• Instructions naturally flow from one to the next,

so no special instruction needed to go
from one sequential subtask to the next.

§Conditional and Iterative
• Create code that converts condition into N, Z, or P.

Example:
Condition: “Is R0 = R1?”
Code: Subtract R1 from R0; if equal, Z bit will be set.

• use BR instruction to transfer control to subtask.

NOT R1, R1
ADD R1, R1, #1
ADD R2, R0, R1
BRz equal

Two instructions
to negate R1,

i.e. to compute 2’s
complement of R1

Question: if condition is “R0 > R1” then
what do we change Branch condition to ?

30

16

31

Code for Conditional

Generate
Condition

Instruction
A

0000B

Subtask 1

C
Subtask 2

Next
Subtask

D

? C

0000 111 D

Subtask 1

Test
Condition

True False

Subtask 2

Next
Subtask

Exact bits depend
on condition
being tested

PC offset to
address C

PC offset to
address D

Unconditional branch
to Next Subtask

Assuming all addresses are close enough that PC-relative branch can be used.

We can also write else part first (subtask 1)
and the then part second (subtask 2)

31

Code for Iteration

Generate
Condition

Instruction
A

0000

B
Subtask

C
Next

Subtask

? C

0000 111 A

Subtask

Test
Condition

True

False

Next
Subtask

Exact bits depend
on condition
being tested

PC offset to
address C

PC offset to
address A

Unconditional branch
to retest condition

Assuming all addresses are on the same page.

32

17

33

Converting Code to Assembly
§ Can use a standard template approach
§ To declare a variable: int sum;
• Sum .BLKW #1

§ To declare and initialize variable: int Count 8;
• Count .FILL #8

§ Clear register (R2 = 0;): AND R2, R2, #0 ; R2 = R2 & 0
§ Copy from R1 to R2: AND R2, R1, #0 ; R2=R1+0
§ Increment counter/register R0: ADD R0, R0, #1
§ Decrement counter/register R0: ADD R0, R0, # -1

§ Typical Constructs
• if/else
• while
• do/while
• for

33

if/else
if(x > 0)
{

r2 = r3 + r4;
}
else
{

r5 = r6 + r7;
}

LD R1, X
BRp THEN
ADD R5,R6,R7
BRnzp DONE

THEN ADD R2,R3,R4
DONE ...

34

18

if/else
if(x > 0)
{

r2 = r3 + r4;
}
else
{

r5 = r6 + r7;
}

LDR1,X
BRnz ELSE
ADD R2,R3,R4
BRnzp DONE

ELSE ADD R5,R6,R7
DONE ...

35

while
x = 0;
i = 10;
while(i > 0)
{

x = x + i;
i--;

}

AND R1,R1,#0
AND R2,R2,#0
ADD R1,R1,#10

WHL BRnz DONE
ADD R2,R2,R1
ADD R1,R1,#-1
BRnzp WHL

DONE HALT

Clearing a register/variable

Decrement count by 1

Initialize register/variable

Always branch

CC registers set by previous instruction…
i.e., value in R1

36

19

37

Exercise…. Write assembly program
§ Download Exercise1.asm for template
§ Fill in code between .ORIG x3000 and the .END
§ Variable Num is a place in memory… initialized to 5
§ label array is starting address of array (x3030)
§ Sum is memory location set aside for result

1. First assign registers to each variable (i, sum, A[i])
2. (Write out flowchart)
3. Identify conditionals
4. get starting address of array

i=Num; /* array size
sum=0;
while (i>0) {

if A[i}<0 { A[i] = 0;}
sum = sum + A[i];
i = i-1;
}

Printf(”sum = %d”, sum);

37

