
10/17/22

1

LC3 Assembly Programming
Week 8 Lab

Exercise

1

2

Today
▪ Write assembly program
• Loop through memory locations

o Get familiar with Load and Store instructions
• Implement XOR operation

▪ The lab exercises, and assembly programming homework, will
help you prepare for Project 4
• Please save the code you write – you can reuse it for the project
• XOR operation is required for the project

2

10/17/22

2

3

Questions on Writing assembly ?
▪ Label = address of that instruction
▪ Specify immediate values as decimal (#), hex (x), binary (b)
▪ .FILL : declare and initialize a value at the mem location

• Count .FILL #5 reserves memory location with label Count and sets its value
to 5…. Analogous to C statement int Count=5;

▪ .BLKW : declare a variable at the memory location
• Sum .BLKW #1 reserves one location with label Sum

o Analogous to C statement int Sum;
• Array .BLKW #10 reserves 10 locations with label Array at the starting address of

the 10 consecutive locations

▪ .ORIG
▪ .END
▪ HALT

3

4

Questions on Writing assembly ?
▪ Conditional statements – use Branch instruction and condition code registers

• Condition code registers set by value of data from previous instruction
• ADD R1, R2, R3 -- output R1 out of ALU determines N, Z, P conditions

▪ IF statement…..
▪ While statement (iterate/loop)

4

10/17/22

3

5

Code for Conditional

Generate
Condition

Instruction
A

0000B

Subtask 1

C
Subtask 2

Next
Subtask

D

? C

0000 111 D

Subtask 1

Test
Condition

True False

Subtask 2

Next
Subtask

Exact bits depend
on condition
being tested

PC offset to
address C

PC offset to
address D

Unconditional branch
to Next Subtask

Assuming all addresses are close enough that PC-relative branch can be used.

We can also write else part first (subtask 1)
and the then part second (subtask 2)

5

Code for Iteration

Generate
Condition

Instruction
A

0000

B
Subtask

C
Next

Subtask

? C

0000 111 A

Subtask

Test
Condition

True

False

Next
Subtask

Exact bits depend
on condition
being tested

PC offset to
address C

PC offset to
address A

Unconditional branch
to retest condition

Assuming all addresses are on the same page.

6

10/17/22

4

7

Using LC3 Assembler/Simulator (LC3 Tools)
▪ Important Note on using LC3 simulator

• Open file (or start new one), type your assembly code
• Assemble

• Open Simulator…. Set breakpoint at last instruction/HALT of your
program– this will stop the simulation after the instruction

• Set it by click on small dot (exclamation) next to where you
want to set breakpoint…it goes red to indicate breakpoint set.

▪ To execute one instruction at a time, use step over
• Track the register and memory contents after each step

▪ or run entire program, and check contents at end of the program
▪ “Step into” option shows you execution within each instruction

(will get clearer once we cover datapath details)

7

8

Creating and Loading a “data” file
▪ LC3Tools permits loading multiple object files

• Loaded at the address specified in that object file (i.e., .ORIG command)

▪ Can use this to create and load a file containing the data to be
processed by your code.

▪ Ex: MyArray.asm is a list of numbers starting at address x4000
▪ Assemble the code – creates object code MyArray.obj
▪ Load this object file into simulator

• Important: make sure you reset program counter is set to start of your main
program.

.ORIG
x4000
.FILL #10
.FILL #20
.FILL #30
.FILL #40
.END

MyArray.asm
Put values 10,20,30,40
at addresses x4000, 4001, 4002, 4003
Respectively.
Loading MyData.obj will result in these
Values in those memory addresses of
the simulator

8

10/17/22

5

9

Creating and Loading a “data” file – alternate
option
▪ LC3Tools permits specifying multiple .ORIG and .END code blocks in same file
▪ When you assemble, it creates one object file and loads each code block (data)

into the specified starting locations.
▪ Example: a list of numbers starting at address x4000
▪ You can type in these lines after (or before) your main program…which should

also have a .ORIG and a .END command
▪ When you assemble the code it creates one object file to be loaded into

simulator

.ORIG x4000

.FILL #10

.FILL #20

.FILL #30

.FILL #40

.END

;start of you program
.ORIG x3000
; instructions in your program
.END ; signifies end of instructions

Start your data block here at x4000
Put values 10,20,30,40
at addresses x4000, 4001, 4002, 4003
Assembler will load into those memory
addresses ofthe simulator

9

10

Exercise: XOR and looping through an array
▪ Write LC3 assembly program that iterates through an array MyArray of N1

numbers and replaces MyArray[i] with MyArray[i] XOR temp
• MyArray is stored starting at x4000
• temp is a variable in your program – assume it is x22

o Recall: a variable is a memory location with a label
o Can be initialized using the .FILL assembler directive

temp .FILL x22
• N1 is a variable (length of array) in your program – assume N1=10

i=N1; ;initialize register i to N1 =10
j = temp; /* read from memory location temp into register j */
while i>0 {

MyArray[i] = MyArray[i] XOR j;
i=i-1; } /* in assembly you have to load starting

/* address of MyArray into a register…
/* starting address is not equal to i !

10

10/17/22

6

11

Steps/Considerations

▪ How to implement bitwise XOR

▪ How to load data from your array into memory into registers

▪ How to store the updated data from registers into memory

▪ How to do this in a loop, using a counter

▪ You can refer to the example from lecture – it has solution now!

i=10; ;initialize register i to 10
j = temp; /* read from memory location temp into register j */
while i>0 {

MyArray[i] = MyArray[i] XOR j;
i=i-1; } /* in assembly you have to load starting

/* address of MyArray into register…
/* starting address is not equal to i !

11

12

Exercise
▪ Program to compute: MyArray[i]= MyArray[i] XOR temp

• MyArray is stored starting at x4000 -- MyArray .FILL x4000
• temp is a variable in your program – assume it is x22 using

temp .FILL x22
• N is a variable (length of array) in your program – assume N=10

ADD R0, R0, #10 will set value of R0=10 … think of R0 as the loop iterator i
▪ How do you implement R1 XOR R2 in LC3 (bitwise XOR)?

• You have AND and NOT ??
▪ How do you implement: for (i=0; i < N; i++)

Equivalently (easier to do): while i >0
note: R0 now stores N=10 at start

▪ To iterate through MyArray:
• Fetch temp into R1
• load starting address of MyArray (x4000) into a register R4 – R4 points to current index
• load element into R2, and XOR with x55 (value of temp stored in R1): R3=R1 XOR R2
• Loop N times (in this case N =10)
• Each time (a) decrement counter R0 by 1 and (b) increment register R4 by 1 so it points

to next array element

12

10/17/22

7

13

Exercise: Implementing XOR

▪ How do you implement R1 XOR R2 in LC3 (bitwise XOR)?
• You have AND and NOT ??

▪ Recall: A XOR B = ((NOT A) AND B) OR (A AND (NOT B))
▪ Oops no OR instruction in LC3 !! … so use DeMorgan’s laws to convert OR to AND

and NOT
▪ C OR D = NOT (NOT (C OR D)) = NOT ((NOT C) AND (NOT D))

▪ In your LC3 program: the two values are in registers R1 and R2
▪ You may need to use other registers for temporary values.

13

14

Exercise: implementing conditional statement (While)

▪ How do you implement: for (i=0; i < N; i++)
Equivalently (easier to do): while i>0 (initially i=N)

note: R0 now stores N=10 at start
▪ Convert to conditional and unconditional branches

If i is not positive then exit loop
inside the loop decrement i at each iteration

last instruction of loop is unconditional branch to instruction to
test if i is positive

WHILE Branch NZ endwhile
…..
i= i-1; /* i is stored in R0 */
Branch NZP to WHILE

endWhile

14

10/17/22

8

15

inside the loop: MyArray [i] = MyArray[i] XOR temp
▪ Before entering loop, load value of temp into R1
▪ Use a register (R4) to point to current location in array

▪ Initially load MyArray (value x4000) into R4 – outside the loop

▪ To iterate through MyArray:
• Load array element into R2 use LDR instruction…get MyArray start address into reg
• XOR with x22 (value of temp stored in R1): R3=R1 XOR R2
• Each time (a) decrement counter R0 by 1 and (b) increment register R4 by 1 so it points

to next array element

Load value from temp into R1
Load address of MyArray (x4000) into R4

WHILE Branch NZ endwhile
Load from address in R4 into register R2
R3 = R1 XOR R2;
Store R3 into address in R4
R4 = R4 +1 ; point to next element in array
i= i-1; /* i is stored in R0 */
Branch NZP to WHILE

endWhile

15

