
CS 2461
Lab- Week 6

2

Announcements
▪ Project 2

• due Monday!!!!

• don’t wait… it’s harder than it seems!!!!!!

• btw… this is a partner project but each person is expected to do their part
and outline what you did in the report (so don’t let your partner take over
the whole thing)

▪ Exam 1
• Tuesday

• Scary!!!!!!!!!!!

• You’ll be fine but….

• study!!!!!!!!!!!

o quizzes

o homeworks

o jeopardy

3

Today….
▪ LC3 machine language programs

▪ Review & Project 2 questions

4

LC3 Machine Code

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x3000 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1
x3001 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0
x3002 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
x3003 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1
x3004 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1
x3005 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0
x3006 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1
X3007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. Starting with first instruction at x3000: determine opcode
2. Determine operands – find address of operands
3. Execute the instruction to determine outcome
4. Go to next instruction

LD R2 #3
ADD R3 R2 #-8
BRnz #2
ST R4 #3
BRnzp #-5
—
AND R2 R2 #2
BRz #-3
BR #0

R3=R2-8 = 4091-8=4083

5

Assembly Language Equivalent
Start LD R2, #3

 ADD R3, R2, # -8

 BRnz Goto

 ST R4, #3

 BRnzp Start

Goto AND R2, R2, #2

 BRz # Start

6

C bitwise operators: code from exercise sept27.c
▪ IF statement did not act as expected due to

• casting of unsigned and signed integers

• Logical AND: if integer operand is not zero then it treats it as True

▪ CallMeFirst: returns the XOR of operands x,y

▪ CallMeNext: returns 2x +1
• (1 << x) is 1*2x = 2x

▪ CallMeLast: returns (x-y)
• temp = ~y +1 is the 2’s complement of y (i.e., it negates y)

▪ whoamI (x,n): returns the n-th byte of x
• 0xFF is a 8-bit mask containing all 1’s

• y=(n <<3) is n*23 = 8n. So y =0 (if n=) or y=8 (if n=1) or y=16 (n=2) or y=24 (n=3)

• 0xFF is shifted y times to the left…i.e., it is shifted to the n-th byte to get a mask that is all 0’s
except for all 1’s in the n-th byte

• This is then and-ed with x – therefore all bits except n-th byte are zero-ed out

• Finally, this n-th byte is shifted to the rightmost byte (byte 0) and returned

▪ whatamI: returns 1 if A is not zero else returns 0.
• Observe the MSB of the XOR of A and –A is a 1 only when A is not zero.

• This MSB is shifted right 31 (to LSB) and then Anded with 0x1

