
CS 2461
Lab- Week 5

2

Today….
▪ Review Design of Finite State Machines – example

▪ Bitwise operations in C – complete the exercise from lecture
course webpage – Exercises-Week5 download sept27.c

3

Finite State Machines
• The behavior of sequential circuits can be expressed using finite state

machines (FSMs).
• FSMs consist of a set of nodes that hold the states of the machine and a set of arcs

that connect the states.
• FSM represented as a graph

▪ Elements of FSM:
• Finite Number of states
• Finite number of inputs and Finite number of outputs
• A specification of the state transitions
• A specification (Boolean function) of the outputs
• Outputs are associated with a node/state

4

FSM Design Process
• The first step is to model the behavior of the machine

• Based on problem statement

• Identify what the inputs are

• Identify the outputs

• Determine what needs to be stored to capture the “state” of the machine

• Represented as a graph – finite state diagram
• Nodes: States – a state stores summary of events (until current time)

• Edges: Transition from current state to next state

• Based on input and current state and computed by combinational logic

• Outputs: value of outputs at each state

• State: the state of a system is a “snapshot” of all relevant elements at an instant in
time.

o Example : vending machine should remember total money received,….

5

Designing and implementing a FSM
1. Understand the problem statement and determine inputs/outputs

2. Identify states and draw the state diagram
• Encode each state in binary using N bits

• State diagram will show transitions from state to state based on value of inputs

3. Next, derive the truth table (from state diagram)
• “inputs” in truth table are N current state variables and the inputs

• These N state variables will need to be stored in N flips flops,

• Label the N state variables S
N-1

S
N-2

 …S
1
S

0

• “outputs” are the values of the state variables in the next state and the output at
each state -- common notation is S’ but confusion with complement operator, so
let’s use S*

4. From truth table, implement combinational circuit (boolean function) for each
of the next state values & outputs
• State variables are stored in your N storage elements

6

FSM Design: Example
▪ design the finite state diagram for a sequential circuit that

generates an output Z=1 whenever the input (binary) string it has
read thus far has an odd number of 0’s and an odd number of 1’s.
• For example, if the input string is 010010 (4 zeros and 2 ones) then output

Z=0. If the input string is 1101 (1 zeros and 3 ones) then the output is Z=1.

▪ Assume: at each clock cycle the machine reads one bit (a 0 or 1)
• Eg. If overall input = 0101 then after 2 cycles it would have read 01 (and

output=1),

after 3 cycles it has read 010 (and output =0), etc.

7

Question: What property in a state ?
▪ The first ‘property’ to note is that for any binary string, the string

has some X number of 1’s and some Y number of 0’s.
• For string 01100 we have X=2 and Y=3

▪ The question is now defined in terms of the properties of X and Y
– if X and Y are both odd then output Z=1

▪ For any binary string how many cases can you have in terms of
the evenness/oddness of X and Y ?

▪ Four cases = Four states:
1. X even and Y even
2. X even and Y odd
3. X odd and Y even
4. X odd and Y odd

8

State transitions
▪ you have 4 cases for any binary string of any length; next, what

happens if a string that has been processed (i.e., read) thus far
falls under case 3 (i.e., X is odd and Y is even) and then the
machine reads a 1

▪ = String (thus far) now has X is even and Y is even = Case 1

▪ you have 4 cases for any binary string of any length; next, what
happens if a string that has been processed (i.e., read) thus far
falls under case 3 (i.e., X is odd and Y is even) and then the
machine reads a 0

▪ = X is odd and Y is odd = Case 4

9

Complete the transitions
▪ Case1 (State1): X even and Y even

• Read 0 go to ?

• Read 1 go to ?

▪ Case 2 (State 2): X even and Y odd
• Read 0 go to ?

• Read 1 go to ?

▪ Case 3 (State 3): X odd and Y even
• Read 0 go to ?

• Read 1 go to ?

▪ Case 4 (State 4): X odd and Y odd
• Read 0 go to ?

• Read 1 go to ?

X = no. of 1’s in string
Y = no. of 0’s in string

States:
1. X even and Y even
2. X even and Y odd
3. X odd and Y even
4. X odd and Y odd

10

Draw the finite state diagram

11

Truth table
▪ How many state variables (storage bits) ?

▪ 2 bits – S
1
 S

0
• State1 = 00 State2 = 01 State3 = 10 State4 = 11

▪ If FSM is in State1 (00) and input=0 then next state is 01 and
current output in State00 is Z=0

▪ In=0 S
1
 =0 S

0
=0 then S

1
* =0 S

0
*=1 Z=0

▪ If FSM is in State 4 (11) and input=1 then next state is 01 and
current output in State11 is Z=1

▪ In=1 S
1
 =1 S

0
=1 then S

1
* =0 S

0
*=1 Z=1

12

Complete the Truth Table

In S1 S0 S1* S0* Z

0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 1 0
0 1 1 1 0 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 0 1 1

13

Questions on Finite State Machines ?

14

Bitwise operations in C

Go to course website
Download Exercises Week 5 – Sept27.c (under C and Data Rep)

(do not compile and run it yet!)

15

C data types and operators
▪ Unsigned and signed int – C allows casting

▪ Bitwise operations:
• & (and)

• | (or)

• ~ (complement)

• ^ (XOR)

• Right shift >> arithmetic shift = MSB is replicated rightwards shift

• Left shift << shift in 0’s into the LSBs

o What is left shift one position ? What is the value of (x <<1) ?

▪ Logical operators: arguments are treated as binary (True or false)
• && (logical And)

• || (logical OR)

• ! (logical NOT)

• Key takeaway: if x is a non-zero integer then x is True

16

Time to test your C …
• Download/open Exercises-Week5 (a C file called sept27.c) from webpage

• Do NOT run the C code….Go through code and answer the questions without
running the code
• Reading code (without running it) is a very important skill

• Use the following values as inputs (this info included in the comments in C file):
• zz = abcd0123 (hex representation of a 32 bit number)

• a=4, b=7, n=2 and different values of c for c>0, c<0, and c=0

• 1. First answer the questions

• 2. Next: Compile and run your code & compare your answers with the
run-time results

• 3. Can you explain what is going on (if your answer did not match)

Notation: a prefix of 0x indicates Hex representation
0x25 is the integer 2*161 + 5*160 = 37
0xFF is the integer with 1’s in last 8 bits, i.e., decimal value 255

17

Describing the function
▪ CallMeNext

 int CallMeNext(int x){
 int t;

 t= (1 <<x); what is 1 << 1 ? What is 1 << 2 ?

 t= t+1; what is 1 << x ?

 return (t);

 }

18

Describing the function
▪ CallMeLast
int CallMeLast(int x, int y){

 int temp;

 temp = ~y; computes complement of y (invert all bits)

 temp = temp +1; what is temp= (NOT y)+1 ?

 temp = temp + x;

 return(temp);

}

19

Describing the function
▪ whoamI 0 < n < 3
int whoamI(int x, int n){

 int rs;

int y = n << 3; what is y when n=2 ? What happens when you
shift an integer left 3 places ?

int xs = 0xFF << y; what is oxFF left shifted 16 places

rs= xs & x; what bits (bytes) are you masking?

/* return(rs); */

 return ((rs >> y)& 0xFF);

}

Example: x= 0x abcd1234 and n=2
What is y = 2 <<3 = 2*8 = 16
What is xs = 0xFF << 16 = 0x 00FF0000
What is rs = 00FF0000 & abcd1234 = ?

20

Describing the function
▪ WhatamI
int whatamI(int A) {

int X,Y;

X = (A ^ (-A)) >> 31; suppose Z= (A ^ (-A)) then what is the least
significant bit of X in terms of Z?

Y = (X & 0x1); when is Y=1 ? When is Y=0 ?

return(Y);

}

think of the binary representation of integers A and –A

if A=12 in binary = 0000………1010 and 0x 0000 000C in Hex

What is –A = -12 in binary ?

 then what is the MSB of (A ^ (-A))

