CS 2461 Lab- Week 5

Today....

- Review Design of Finite State Machines - example
- Bitwise operations in C - complete the exercise from lecture course webpage - Exercises-Week5 download sept27.c

Finite State Machines

- The behavior of sequential circuits can be expressed using finite state machines (FSMs).
- FSMs consist of a set of nodes that hold the states of the machine and a set of arcs that connect the states.
- FSM represented as a graph
- Elements of FSM:
- Finite Number of states
- Finite number of inputs and Finite number of outputs
- A specification of the state transitions
- A specification (Boolean function) of the outputs
- Outputs are associated with a node/state

FSM Design Process

- The first step is to model the behavior of the machine
- Based on problem statement
- Identify what the inputs are
- Identify the outputs
- Determine what needs to be stored to capture the "state" of the machine
- Represented as a graph - finite state diagram
- Nodes: States - a state stores summary of events (until current time)
- Edges: Transition from current state to next state
- Based on input and current state and computed by combinational logic
- Outputs: value of outputs at each state
- State: the state of a system is a "snapshot" of all relevant elements at an instant in time.
o Example : vending machine should remember total money received,....

Designing and implementing a FSM

1. Understand the problem statement and determine inputs/outputs
2. Identify states and draw the state diagram

- Encode each state in binary using N bits
- State diagram will show transitions from state to state based on value of inputs

3. Next, derive the truth table (from state diagram)

- "inputs" in truth table are N current state variables and the inputs
- These N state variables will need to be stored in N flips flops,
- Label the N state variables $\mathrm{S}_{\mathrm{N}-1} \mathrm{~S}_{\mathrm{N}-2} \ldots \mathrm{~S}_{1} \mathrm{~S}_{0}$
- "outputs" are the values of the state variables in the next state and the output at each state -- common notation is S^{\prime} but confusion with complement operator, so let's use S*

4. From truth table, implement combinational circuit (boolean function) for each of the next state values \& outputs

- State variables are stored in your N storage elements

FSM Design: Example

- design the finite state diagram for a sequential circuit that generates an output $\mathrm{Z}=1$ whenever the input (binary) string it has read thus far has an odd number of 0's and an odd number of 1's.
- For example, if the input string is 010010 (4 zeros and 2 ones) then output $\mathrm{Z}=0$. If the input string is 1101 (1 zeros and 3 ones) then the output is $\mathrm{Z}=1$.
- Assume: at each clock cycle the machine reads one bit (a 0 or 1)
- Eg. If overall input $=0101$ then after 2 cycles it would have read 01 (and output=1),
after 3 cycles it has read 010 (and output $=0$), etc.

Question: What property in a state ?

- The first 'property' to note is that for any binary string, the string has some X number of 1's and some Y number of 0 's.
- For string 01100 we have $X=2$ and $Y=3$
- The question is now defined in terms of the properties of X and Y - if X and Y are both odd then output $\mathrm{Z}=1$
- For any binary string how many cases can you have in terms of the evenness/oddness of X and Y ?
- Four cases = Four states:

1. X even and Y even
2. X even and Y odd
3. X odd and Y even
4. X odd and Y odd

State transitions

- you have 4 cases for any binary string of any length; next, what happens if a string that has been processed (i.e., read) thus far falls under case 3 (i.e., X is odd and Y is even) and then the machine reads a 1
- = String (thus far) now has X is even and Y is even = Case 1
- you have 4 cases for any binary string of any length; next, what happens if a string that has been processed (i.e., read) thus far falls under case 3 (i.e., X is odd and Y is even) and then the machine reads a 0
- $=X$ is odd and Y is odd $=$ Case 4

Complete the transitions

- Case1 (State1): X even and Y even
- Read 0 go to ?
- Read 1 go to ?
- Case 2 (State 2): X even and Y odd
- Read 0 go to ?
- Read 1 go to ?
- Case 3 (State 3): X odd and Y even
- Read 0 go to ?
- Read 1 go to ?
- Case 4 (State 4): X odd and Y odd
- Read 0 go to ?
- Read 1 go to ?
$X=$ no. of 1's in string $Y=$ no. of 0's in string

States:

1. X even and Y even
2. X even and Y odd
3. X odd and Y even
4. X odd and Y odd

Draw the finite state diagram

Truth table

- How many state variables (storage bits) ?
- 2 bits $-S_{1} S_{0}$
- State1 = 00 State2 = 01 State3 = 10 State4 = 11
- If FSM is in State1 (00) and input=0 then next state is 01 and current output in State00 is $\mathrm{Z}=0$
- In=0 $\quad S_{1}=0 \quad S_{0}=0$ then $S_{1}^{*}=0 \quad S_{0}^{*}=1 \quad Z=0$
- If FSM is in State 4 (11) and input=1 then next state is 01 and current output in State11 is $\mathrm{Z}=1$
- $\operatorname{In}=1 \quad S_{1}=1 \quad S_{0}=1$ then $S_{1}^{*}=0 \quad S_{0}^{*}=1 \quad Z=1$

Complete the Truth Table

In	S1	S0	$\mathbf{S 1}^{*}$	$\mathbf{S O}^{*}$	\mathbf{Z}
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	0	1	1

Questions on Finite State Machines ?

Bitwise operations in C

Go to course website
Download Exercises Week 5 - Sept27.c (under C and Data Rep)
(do not compile and run it yet!)

C data types and operators

- Unsigned and signed int - C allows casting
- Bitwise operations:
- \& (and)
- | (or)
- ~ (complement)
- ^(XOR)
- Right shift >> arithmetic shift = MSB is replicated rightwards shift
- Left shift << shift in 0's into the LSBs
- What is left shift one position ? What is the value of $(x \ll 1)$?
- Logical operators: arguments are treated as binary (True or false)
- \&\& (logical And)
- || (logical OR)
- ! (logical NOT)
- Key takeaway: if x is a non-zero integer then x is True

Time to test your C ...

- Download/open Exercises-Week5 (a C file called sept27.c) from webpage
- Do NOT run the C code....Go through code and answer the questions without running the code
- Reading code (without running it) is a very important skill
- Use the following values as inputs (this info included in the comments in C file):
- $z z=$ abcd0123 (hex representation of a 32 bit number)
- $a=4, b=7, n=2$ and different values of c for $c>0, c<0$, and $c=0$
- 1. First answer the questions
- 2. Next: Compile and run your code \& compare your answers with the run-time results
- 3. Can you explain what is going on (if your answer did not match)

Notation: a prefix of $0 x$ indicates Hex representation
0×25 is the integer $2^{*} 16^{1}+5^{*} 16^{0}=37$
0xFF is the integer with 1's in last 8 bits, i.e., decimal value 255

Describing the function

- CallMeNext
int CallMeNext(int x)\{
int t;
$t=(1 \ll x)$; what is $1 \ll 1$? What is $1 \ll 2$?
$t=t+1$; what is $1 \ll x$?
return (t);
\}

Describing the function

- CallMeLast

```
int CallMeLast(int x, int y){
    int temp;
    temp = ~y; computes complement of y (invert all bits)
    temp = temp +1; what is temp= (NOT y)+1 ?
    temp = temp + x;
    return(temp);
}
```


Describing the function

- whoaml $0 \leq n \leq 3$ int whoamI(int x, int n)\{
int rs;
int $\mathrm{y}=\mathrm{n}$ << 3; what is y when $\mathrm{n}=2$? What happens when you shift an integer left 3 places?
int xs = 0xFF << y; what is oxFF left shifted 16 places
$r s=x s \& x ; \quad$ what bits (bytes) are you masking?
/* return(rs); */ return ((rs >> y)\& 0xFF);
\}
Example: $x=0 x$ abcd1234 and $n=2$
What is $y=2 \ll 3=2 * 8=16$
What is xs = 0xFF << $16=0 x 00 F F 0000$
What is rs = 00FF0000 \& abcd1234 = ?

Describing the function

- WhatamI

```
int whatamI(int A) {
```

 int \(\mathrm{X}, \mathrm{Y}\);
 $X=(A \wedge(-A)) \gg 31$; suppose $Z=(A \wedge(-A))$ then what is the least significant bit of X in terms of Z ?
$Y=(X \& 0 \times 1)$; when is $Y=1$? When is $Y=0$?
return (Y);
\}
think of the binary representation of integers A and -A
if $A=12$ in binary $=0000 \ldots \ldots . .1010$ and $0 x 0000000 \mathrm{C}$ in Hex
What is $-\mathrm{A}=-12$ in binary ?
then what is the MSB of ($\mathrm{A}^{\wedge}(-\mathrm{A})$)

