
9/8/22

1

CS 2461
Lab- Week 2

1

2

Today….
▪ Quick review of data representation and operations on bits

▪ Review Transistor circuits (gates)

2

9/8/22

2

3

Binary Representation Summary
▪ Every storage locations stores a finite sequence of bits

• 8-bit, 16-bit, 32-bit etc.

▪ The same bit string can mean different things depending on how
the program wants to look at it….based on data representation
used
Address 7 6 5 4 3 2 1 0

35 1 0 0 0 0 0 0 1

36 1 0 0 0 0 1 1 1

37 1 1 1 0 0 0 0 1

38 0 1 1 0 1 1 0 1

Unsigned: +129

2C: -127

2C: 109

ASCII: ‘m’
If string at address 38 is defined as type int in C then value = 109

If defined as char then value=m

3

4

Arithmetic and Logic Operations
▪ Arithmetic:

• Addition
• Subtract (negative number and add to second number)
• Shift – left shift by one position is multiplying by 2; right shift is division by 2

o Shift left twice = multiply by 22 = 4
• Multiplication….

▪ Logic operators
• AND, OR, NOT,…… Define using truth tables
• Bitwise operations – apply logical operator at each bit position

4

9/8/22

3

5

Shifting Bit Fields

▪ Shift Left:
• Move all #’s to the left, fill in empty spots with a 0

▪ Shift Right (2 kinds):
• shift right logical (SRL) >>

o shift 0’s in from the left
• shift right arithmetic (SRA) >>>

o replicate the sign bit, (very useful for sign extension!)

7 6 5 4 3 2 1 0
Original Pattern x 0 1 1 0 1 0 1 1
X << 1 – Left Shift by 1 1 1 0 1 0 1 1 0
X << 2 – Left Shift by 2 1 0 1 0 1 1 0 0

Original Pattern x 1 1 1 0 1 0 1 1
X >> 1 –Shift Right (logical) by 1 0 1 1 1 0 1 0 1
X >>> 1 – Shift Right (arithmetic) by 1 1 1 1 1 0 1 0 1

5

6

Dose of reality: Finite Width and Overflow
▪ Integers have infinite width

• There are an infinite number of them

▪ Hardware integers have finite (architecture defined) width
• Limited by hardware circuits themselves
• 64- bit these days (264 integers):
• LC3 integers are 16-bit (216 or ~64,000)

▪ Overflow: when operation result is outside type’s range
• Example: 15 + 1 with 4-bit integers (16 needs 5 bits, 10000)

1111
+ 0001

10000

(15)

(1
)
(16)

overflow
(carry-out)

Problem: using 4-bit representation the sum is 0!!
6

9/8/22

4

7

Arithmetic Overflow - Summary
▪ For unsigned numbers

• Any addition that produces an ‘extra bit’ is a problem

▪ For 2C signed numbers
• Sometimes addition or subtraction produce an extra bit – this is not

necessarily a problem.
• Overflow if Signs of both operands are the same AND the sign of the sum is

different
• Arithmetic overflow can occur when you are adding 2 positive or 2 negative

numbers – in this case if the sign of the result is different from the sign of
the addends you have an arithmetic overflow
o (this is the key to determining overflow condition in 2C)

• CPU architectures today, use 2C representation

7

8

Sign Extension
▪ Suppose we have a number which is stored in a four bit register and we want

to add this number to a number stored in a eight bit register
▪ We have a device (an 8-bit adder) which will do the addition and it is designed

to add two 8 bit numbers
• SW Analogy: Calling a function with the correct (type, number) arguments

▪ Therefore extend 4-bit number to 8-bit…. How ?

▪ Suppose we just pad 0’s to the left:
• 4 bit 0100 (decimal 4) becomes 0000 0100 which is decimal 4
• 4 bit 1100 (decimal -4) becomes 0000 1100 which is decimal 12…wrong!

▪ Solution: replicate Most Significant bit (pad MSB to the left)
• 4 bit 0100 (decimal 4) becomes 0000 0100 which is still decimal 4
• 4 bit 1100 (decimal -4) becomes 1111 1100 which is still decimal -4

8

9/8/22

5

9

Bitwise Logical Operations
▪ View n-bit field as a collection of n logical values

• Apply operation to each bit independently

▪ Bitwise AND: useful for clearing bits
• AND with zero = 0
• AND with one = no change

▪ Bitwise OR: useful for setting bits
• OR with zero = no change
• OR with one = 1

▪ Computers don’t support individual bits as a data type
• Just use least significant bit of n-bit integer
• Integers are generally more useful

11000101
AND 00001111

00000101
11000101
OR
00001111

11001111

9

10

Bitwise Operations – Group Exercises…..
▪ Let A,B,C,D,F be any 8 bit 2’s complement numbers

• i.e., think of A as type int in a C program
1. What is C = A AND 00000001

• How many different values can C have ? What are they and when do they occur ?
• What property of A is determined by this “statement” ?

2. What is D = (A >> 7) AND 00000001 (right shift operator)

• How many different values can D have? When do they occur?
• What property of A is determined by this ”statement” ?

3. What is F = (A OR B) AND 00000001
• How many different value can F have? When does each value occur ?
• What property (of A,B) is determined by this “statement”

10

9/8/22

6

11

Review….Transistor Circuits and Logic gates
▪ Transistor acts as a voltage controlled switch

• Send 0 or 1 to transistor Gate: switch closes or opens

▪ Two types of Transistors used in our circuits:
▪ p-type = switch closes if gate input =0, open if input =1
▪ n-type = switch closes if gate input =1, open if input =0

▪ Circuit Output = voltage measured at some location in the circuit
• 1 if there is a positive voltage, and 0 if no voltage

11

12

Abstraction: Simplified view of p-type MOS
Transistor
▪ p-type

• when Gate has positive voltage,
open circuit between #1 and #2
(switch open)

• when Gate has zero voltage,
short circuit between #1 and #2
(switch closed)

Gate = 1

Gate =
0

Important: For p-type, Terminal #1
must be connected to Voltage Source.

12

9/8/22

7

13

Abstraction: Simplified view of n-type MOS
Transistor

▪ n-type complementary to p-type
• when Gate has positive voltage,

short circuit between #1 and #2
(switch closed)

• when Gate has zero voltage,
open circuit between #1 and #2
(switch open)

Gate = 1

Gate =
0

Important: For n-type, Terminal #2
must be connected to Ground (0V).

13

NAND Gate – NOT (AND): C = NOT (A AND B)

A B C
0 0 1
0 1 1
1 0 1
1 1 0

Note: Parallel structure on top, serial on bottom.

Truth
Table

So how to build an AND gate ?
A AND B = NOT (NOT (A AND B))

Use NAND and NOT
Send output of NAND to

Input of NOT gate

NAN
D

Symbol for NAND gate

14

9/8/22

8

Solution to Question – Group Exercise
1. Derive truth table for this circuit,
Inputs= A,B
Output =C
2. What function is implemented ?

NOR gate = NOT (A OR B)

NOR

15

16

AN
D

OR

NOT/INV

Basic Logic Gates - Symbols

NAN
D

NOR

16

9/8/22

9

17

Shorthand for Inverting Signals
▪ Invert a signal by adding either

• a before/after a gate
• a “bar” over letter

A AND B

A AND B

A
B

A
B

A OR BA
B

17

18

Example: Your first combinational circuit
▪ Combinational logic circuits ~ propositional logic statements
▪ Use gates to implement the logic operators (‘functions’)

• No necessity to show the circuit using transistors since each gate
corresponds to an implementation using transistors

▪ Output = ((NOT A) AND B) OR C
▪ Need one AND gate and one OR gate (and one NOT

gate/invertor)

A
B

C
Out

18

9/8/22

10

19

More than 2 Inputs? Arbitrary Functions?
▪ AND/OR can take any number of inputs

• AND = 1 if all inputs are 1
• OR = 1 if any input is 1 (0 if all inputs are 0)

▪ Implementation
• Multiple two-input gates or single CMOS circuit

▪ Can implement arbitrary boolean functions as a gate
• More complex n- and p- networks

19

20

Exercise….Truth table for circuit

A B C OUT
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

20

