CS 2461
 Lab- Week 2

1

Today....

- Quick review of data representation and operations on bits
- Review Transistor circuits (gates)

Binary Representation Summary

- Every storage locations stores a finite sequence of bits
- 8-bit, 16-bit, 32-bit etc.
- The same bit string can mean different things depending on how the program wants to look at it....based on data representation used

Arithmetic and Logic Operations

- Arithmetic:
- Addition
- Subtract (negative number and add to second number)
- Shift - left shift by one position is multiplying by 2 ; right shift is division by 2 - Shift left twice $=$ multiply by $2^{2}=4$
- Multiplication....
- Logic operators
- AND, OR, NOT,...... Define using truth tables
- Bitwise operations - apply logical operator at each bit position

Shifting Bit Fields

	7	6	5	4	3	2	1	0
Original Pattern x	0	1	1	0	1	0	1	1
$X \ll 1$ - Left Shift by 1	1	1	0	1	0	1	1	0
$X \ll 2$ - Left Shift by 2	1	0	1	0	1	1	0	0
Original Pattern x	1	1	1	0	1	0	1	1
$\mathbf{X} \gg 1$-Shift Right (logical) by 1	0	1	1	1	0	1	0	1
$X \ggg 1$ - Shift Right (arithmetic) by 1	1	1	1	1	0	1	0	1

- Shift Left:
- Move all \#'s to the left, fill in empty spots with a 0
- Shift Right (2 kinds):
- shift right logical (SRL) >>
- shift 0's in from the left
- shift right arithmetic (SRA) >>> - replicate the sign bit, (very useful for sign extension!)

Dose of reality: Finite Width and Overflow

- Integers have infinite width
- There are an infinite number of them
- Hardware integers have finite (architecture defined) width
- Limited by hardware circuits themselves
- 64- bit these days (2 ${ }^{64}$ integers):
- LC3 integers are 16 -bit (2^{16} or $\sim 64,000$)
- Overflow: when operation result is outside type's range
- Example: $15+1$ with 4-bit integers (16 needs 5 bits, 10000)

Problem: using 4-bit representation the sum is 0!!

Arithmetic Overflow - Summary

- For unsigned numbers

- Any addition that produces an 'extra bit' is a problem
- For 2C signed numbers
- Sometimes addition or subtraction produce an extra bit - this is not necessarily a problem.
- Overflow if Signs of both operands are the same AND the sign of the sum is different
- Arithmetic overflow can occur when you are adding 2 positive or 2 negative numbers - in this case if the sign of the result is different from the sign of the addends you have an arithmetic overflow
\circ (this is the key to determining overflow condition in 2C)
- CPU architectures today, use 2C representation

7

Sign Extension

- Suppose we have a number which is stored in a four bit register and we want to add this number to a number stored in a eight bit register
- We have a device (an 8-bit adder) which will do the addition and it is designed to add two 8 bit numbers
- SW Analogy: Calling a function with the correct (type, number) arguments
- Therefore extend 4-bit number to 8 -bit.... How ?
- Suppose we just pad 0's to the left:
- 4 bit 0100 (decimal 4) becomes 00000100 which is decimal 4
- 4 bit 1100 (decimal -4) becomes 00001100 which is decimal 12 ...wrong!
- Solution: replicate Most Significant bit (pad MSB to the left)
- 4 bit 0100 (decimal 4) becomes 00000100 which is still decimal 4
- 4 bit 1100 (decimal -4) becomes 11111100 which is still decimal -4

Bitwise Logical Operations

- View n-bit field as a collection of n logical values
- Apply operation to each bit independently
- Bitwise AND: useful for clearing bits

11000101

- AND with zero $=0$

00001111

- AND with one = no change
- Bitwise OR: useful for setting bits
- OR with zero = no change
- $O R$ with one $=1$

00000101

Computers don't support individual bits as a data type
00001111

- Just use least significant bit of n-bit integer
- Integers are generally more useful

11001111

Bitwise Operations - Group Exercises.....

- Let A, B, C, D, F be any 8 bit 2's complement numbers
- i.e., think of A as type int in a C program

1. What is $\mathrm{C}=\mathrm{A}$ AND 00000001

- How many different values can C have ? What are they and when do they occur ?
- What property of A is determined by this "statement" ?

2. What is $\mathrm{D}=(\mathrm{A} \gg 7)$ AND 00000001 (right shift operator)

- How many different values can D have? When do they occur?
- What property of A is determined by this "statement" ?

3. What is $F=(A O R B)$ AND 00000001

- How many different value can F have? When does each value occur ?
- What property (of A, B) is determined by this "statement"

Review....Transistor Circuits and Logic gates

- Transistor acts as a voltage controlled switch
- Send 0 or 1 to transistor Gate: switch closes or opens
- Two types of Transistors used in our circuits:
- p-type $=$ switch closes if gate input $=0$, open if input $=1$
- n-type $=$ switch closes if gate input $=1$, open if input $=0$
- Circuit Output = voltage measured at some location in the circuit
- 1 if there is a positive voltage, and 0 if no voltage

Abstraction: Simplified view of p-type MOS Transistor

- p-type
- when Gate has positive voltage, open circuit between \#1 and \#2 (switch open)
- when Gate has zero voltage, short circuit between \#1 and \#2 (switch closed)

Gate $=1$

Important: For p-type, Terminal \#1 must be connected to Voltage Source.

Abstraction: Simplified view of n-type MOS Transistor

- n-type complementary to p-type
- when Gate has positive voltage, short circuit between \#1 and \#2 (switch closed)
- when Gate has zero voltage, open circuit between \#1 and \#2 (switch open)

Important: For n-type, Terminal \#2

NAND Gate - NOT (AND): C = NOT (A AND B)

So how to build an AND gate?
A AND B $=\operatorname{NOT}(N O T(A$ AND B))
Use NAND and NOT
Send output of NAND to
Input of NOT gate

Note: Parallel structure on top, serial on bottom.

Solution to Question - Group Exercise

1. Derive truth table for this circuit,
 Inputs= A, B
Output $=C$
2. What function is implemented ?

NOR gate $=$ NOT (A OR B)

15

Basic Logic Gates - Symbols

Shorthand for Inverting Signals

- Invert a signal by adding either
- a Obefore/after a gate
- a "bar" over letter

Example: Your first combinational circuit

- Combinational logic circuits ~ propositional logic statements
- Use gates to implement the logic operators ('functions')
- No necessity to show the circuit using transistors since each gate corresponds to an implementation using transistors
- Output = ((NOT A) AND B) OR C
- Need one AND gate and one OR gate (and one NOT gate/invertor)

More than 2 Inputs? Arbitrary Functions?

- AND/OR can take any number of inputs
- AND = 1 if all inputs are 1
- OR = 1 if any input is 1 (0 if all inputs are 0)
- Implementation
- Multiple two-input gates or single CMOS circuit

- Can implement arbitrary boolean functions as a gate
- More complex n - and p - networks

Exercise....Truth table for circuit

A	B	C	OUT
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

