CSCI 2461: Lab 1

- Introductions
- Review Binary Representation
- Quick Physics Review

Who are we ?

- Sam Kusner
- Kate Halushka
- Karl Simon
- Ruining Yang
- Lauren Hahn
- Jonathan Lee

What to expect in this course ? Our experience

Today's Lab session

- 1. Review lecture on Binary RepresentationQuestions ?
- 2. Quick review of Physics (needed for circuit design)

(Unsigned) Integer Representation

- Non-positional notation (unary): 5 represented as 11111
- What are you used to ? Decimal representation (0..9) and...
- Decimal Weighted positional representation
- Position gives the weight of the location
- Extend to any base, including binary.....
- Weights in decimal are $10^{0}, 10^{1}, 10^{2}, 10^{3}, \ldots$
- Weights in binary are $2^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots$.

Integer Representation

- Weighted positional representation in Binary

$$
1 \times 4+0 \times 2+1 \times 1=5
$$

Notations: the bit position i has weight of 2^{i} n bit binary number $\mathrm{a}_{\mathrm{n}-1} \mathrm{a}_{\mathrm{n}-2}, \ldots, \mathrm{a}_{1}, \mathrm{a}_{0}$ represents the decimal value/number

$$
\sum_{i=0}^{i=n-1} \quad a_{i} 2^{i}
$$

7

Questions

- what decimal number does the binary string 11001 represent
- What decimal number does 00110 represent ?

Decimal to Binary Conversion:

1. What is the binary representation of decimal number 19

- Express 19 as a sum of numbers each a power of 2
- Algorithm to convert decimal (base 10) to binary (base 2)
- Generalize to convert from base k to base m
k bit number: $b_{k-1}, b_{k-2}, \ldots, b_{1}, b_{0}$
Decimal integer N represented by this binary number is:

$$
b_{k-1} 2^{k-1}+b_{k-2} 2^{k-2}+\ldots+b_{1} 2^{1}+b_{0} 2^{0}
$$

$$
19=1.16+0.8+0.4+1.2+1.1
$$

$=1.2^{4}+0.2^{3}+0.2^{2}+1.2^{1}+1.2^{0}$ 10011

Conversion from Decimal to Binary

//input is Decimal number N , output is list of bits $\mathrm{b}_{\mathrm{i}} / /$
i=0;
while $\mathrm{N}>0$ do
$b_{i}=N \% 2 ; / / b_{i}=$ remainder; $N \bmod 2$
$\mathrm{N}=\mathrm{N} / 2$; // N becomes quotient of division
i++;
end while /* replace 2 by k and your algo can convert to any base k */

- Iteration $\mathrm{i}=0$: $\mathrm{b}_{0}=19 \% 2=1$ and $\mathrm{N}=19 / 2=9$
- Iteration $1: b_{1}=9 \% 2=1$ and $N=4$
- Iteration $2: \mathrm{b}_{2}=4 \% 2=0$ and $\mathrm{N}=2$
- Iteration 3: $b_{3}=2 \% 2=0$ and $N=1$
- Iteration 4: $\mathrm{b}_{4}=1 \% 2=1$ and $\mathrm{N}=0$ so loop terminates
- Binary representation of $19=10011$

Questions

- What is the binary representation of 11
- What is the binary representation of 23

Quick Physics Review Why ? we need a bit of this to study digital logic circuits

- Basics of electricity:
- Voltage
- Current
- Resistance
- Ohm's law

Let's start with a river....

- Water always flows from high elevation to low elevation
- Speed of the water flow is dependent on:
- Steepness of the slope/height of the source
- Obstructions in the river's path that resist the flow of water
- The height difference is a type of "potential" energy
- Higher the start of the river the greater the flow/pressure
- A voltage difference analogous to an elevation difference in a waterfall water flows from higher elevation to lower elevation

13

Voltage

- Measured in Volts - symbol for voltage is V
- Always measure relative to some baseline (usually "ground" or 0 volts)
- Battery is most common source of voltage
- Analogous to a "pump" that releases electricity into a circuit at a certain voltage (potential/ height)

- Conventionally, electicity moves from high voltage (+ve) to low voltage (-ve)
- Electrons flow from -ve to +ve
- A voltage difference between 2 points captures the amount of work it would take to move charge from one point to another
- analogous to an elevation difference in a waterfall

Current and Resistance

- Current: A measurement of the flow of electricity, i.e., "how fast" it's going
- Flow of electrons
- Measured in Amperes (amps) - symbol is I
- Resistance: opposes the flow (of electricity)
- Measured in Ohm's - symbol is R
- Resistor = common electrical component that offers resistance in circuit

15

Ohm's Law

- Voltage, Current, Resistance in a circuit are closely related
- More voltage = more current flow
- More resistance = less current flow
- But we can add voltage to increase current !
- Ohm's Law: formula to describe the voltage-current-resistance relationship

$$
\mathbf{V}=\mathbf{I} * \mathbf{R}
$$

- You can also solve
- current $\mathrm{I}=\mathrm{V} / \mathrm{R}$
- Resistance $\mathrm{R}=\mathrm{V} / \mathrm{I}$
- Note if R is infinity (very large) then current $=0$!

Voltage/Current and Electric Field

Direction of charge carrier (e-)
$\xrightarrow[\text { Direction of current }]{ }$

Battery provide voltage Aka: potential difference

Direction of current Ohm's Law: $V=\mathbb{R}$

Looking at a circuit diagram

- Do we know which way the electricity flows ?

$$
\begin{aligned}
& \text { *Usual symbol for } \\
& \text { battery: } \\
& \frac{+\quad+}{\bar{T} 1}
\end{aligned}
$$

Example Problem 1:

- What is the value of R1?
- Recall Ohm's law V = IR

Example Problem 2

- What is the value of V ?

More circuit theory.....

- Types of Circuits
- Series
- Parallel

What is a "series" circuit?

- When components are placed one after another (ex: some Christmas lights)
- Characteristic: the current at all points will be the same
- $I_{1}=I_{2}=I_{3}$
- Electricity does not "build up" in front of R_{1} because the current is slowed to the same speed at all points

"Series" circuits

- Voltage sources in series are added together
- 2 * $1.5=3.0 \mathrm{~V}$

- ..and so do resistances

What is a "parallel" circuit

- Anytime we have multiple paths for electricity to follow (i.e., forks in the road!)
- So, we need to know how forks affect our voltage and current....

Path of least resistance

- Current flowing through each branch is proportional to the resistance
- i.e., we see more current (double) flowing throught R_{2} than R_{1}
- Question: What if $R_{1}=$ infinity ? Does any current flow through it

Switches (very relevant to us!)

- A switch inherently represents two states: ON/OFF (closed/open)
- Interpret ON=1 and OFF=0 and we have binary!

- When switches are put in a circuit, can start/stop current flow

Switches and Series/Parallel Circuits

- Putting multiple switches in a circuit (replace resistors with switches)

27

Switches and Series/Parallel Circuits

Series \& Parallel Circuits: Key takeaway

- Series circuits: resistance adds up and there is still only one path from +ve to -ve.
- Current flows through each of the parallel circuits from Voltage source (battery +) to voltage ground (battery - ve).
- More current flows through circuit with lower resistance...path of least resistance!!
- In context of switches (instead of resistors):

Parallel Circuits: Current flows if at least one of the switches is closed/ON

- No current flows if ALL switches are open/OFF

Series Circuits: Current flows if ALL switches are ON

- No current flows if at least one switch if OFF

Questions?

