Review of Boolean Algebra and Karnaugh Maps

Theory of Combinational Logic Design?

- Is there a well grounded theory behind design of boolean logic circuits/functions ?
- Equivalent circuits ?
- Efficient design ?
> Fewest gates used

Boolean Algebra

- To describe behavior of combinational circuit
> Truth table
> Boolean algebraic expressions
> Digital logic circuit/diagram
- Algebraic expression written according to laws of boolean algebra specifies not only what a combinational circuit does, but also how it does it!

Boolean Algebra - Definitions..recall from Discrete Math

- Boolean algebra has three operations defined over boolean variables:
> OR (+), AND (.) and complement (')
- Recall fundamental properties of Boolean algebra
> These apply to anything that is a boolean algebra
, Sets, digital logic circuits, .

Boolean Algebra- Fundamental

 Properties- Commutative:
> $x+y=y+x$
$x . y=y \cdot x$
- Associative
> $(x+y)+z=x+(y+z)$
$(x . y) . z=x .(y . z)$
- Distributive

$$
>x+(y \cdot z)=(x+y) \cdot(x+z) \quad x \cdot(y+z)=(x \cdot y)+(x \cdot z)
$$

- Identity
> $x+0=x$
$x .1=x$
- Complement
$>x+\left(x^{\prime}\right)=1$
$x .\left(x^{\prime}\right)=0$

Laws of Boolean algebra

- Duality property: each boolean property has a dual property
> Exchange + and. Exchange 1 and 0
- Many useful properties/theorems can be proved from the 10 fundamental properties

Example: Idempotent Property

- Prove: $x+x=x$
- Proof: use only the 10 fundamental laws
- $x+x=(x+x) .1$; From identity property
- $(x+x) .1=(x+x) .(x+x)$; complement
- $(x+x) \cdot(x+x)=(x . x)+\left(x \cdot x^{\prime}\right)$; distributive
- $x+\left(x . x^{\prime}\right)=x+0$; complement
- $x+0=x$; identity property
> QED
- The duality property is: $x . x=x$

Some useful properties. . .

- Zero theorem

$$
>x+1=1 \quad x .0=0
$$

- Absorption property
$>x+x . y=x \quad x .(x+y)=x$
- De Morgan's law
$>(a . b)^{\prime}=a^{\prime}+b^{\prime} \quad(a+b)^{\prime}=a^{\prime} . b^{\prime}$
$>(a . b . c)^{\prime}=a^{\prime}+b^{\prime}+c^{\prime} \quad(a+b+c)^{\prime}=a^{\prime} . b^{\prime} . c^{\prime}$
- Complement
$>\left(x^{\prime}\right)^{\prime}=x$
>

Two Level Circuits

- Every boolean expression can be transformed to an AND-OR expression
> Resulting in a 2 level circuit
- Advantage of 2 level circuit?
> Gate delays
> Go through only two levels/layers of gates

Why this discussion of Boolean Algebra...

- Every boolean expression has a corresponding logic circuit diagram; and every logic circuit diagram has a corresponding boolean expression
> One to one correspondence
- But a given truth table can have several corresponding implementations
- How to map from truth table to boolean expression?
> How to pick the "best" boolean expression ?

Simplification of boolean expressions

- The boolean expression/function $x(a, b, c, d)=$ $a^{\prime} b d^{\prime}+a^{\prime} c^{\prime} d^{\prime}+a^{\prime} b c^{\prime} d$ '
- Can be simplified using absorption property to

$$
a^{\prime} b d^{\prime}+\left(a^{\prime} c^{\prime} d^{\prime}\right)+\left(a^{\prime} c^{\prime} d^{\prime}\right) b=a^{\prime} b d^{\prime}+a^{\prime} c^{\prime} d^{\prime}
$$

- Given truth table we want to find an "efficient" implementation (i.e., circuit)
> Efficient in speed
> Efficient in number of gates
> Simplicity of design
> Canonical boolean expression
- Graphical method for designing two level circuits with 3 or 4 variables using minimum possible number of gates
> What is this method ????

Canonical Expressions

- Consider boolean expression x, where $x(a, b, c)=a b c+a \prime b c+a b$
> First two are minterms since they contain all three input variables
- $a b c+a^{\prime} b c+a b=a b c+a^{\prime} b c+a b\left(c+c^{\prime}\right)$

$$
\begin{aligned}
& =a b c+a^{\prime} b c+a b c+a b c^{\prime} \\
& =a b c+a^{\prime} b c+a b c
\end{aligned}
$$

Truth table?

Example

a	b	c	x
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

∞
 Transformation of the Boolean expression

- $a b c+a^{\prime} b c+a b c$ '
$=\left(a+a^{\prime}\right) b c+a b c{ }^{\prime}$
$=b c+a b c$ '
- a ' $b c+a b c+a b c$ '
$=a^{\prime} b c+a b\left(c+c^{\prime}\right)$
$=a^{\prime} b c+a b$
- a ' $b c+a b c+a b c$ '
$=a^{\prime} b c+a b c+a b c+a b c$ '
$=\left(a^{\prime}+a\right) b c+a b\left(c+c^{\prime}\right)$
$=b c+a b$

Distance between minterms

- Concept of "distance" between two minterms (Hamming distance):
> Number of variables that are different
> Distance(abc, abc')=1 only c and c' different
> Distance(abc, a'bc')=2 both a and c are different
- Arrange 2-d truth table so that values in consecutive columns(rows) differ in one bit position

Truth table in 2-dimensions

a

$$
x_{1}=b c \quad x_{2}=a b
$$

Therefore, $\mathrm{x}=\mathrm{a}{ }^{\prime} \mathrm{bc}+\mathrm{abc}+\mathrm{abc}{ }^{\prime}=\mathrm{bc}+\mathrm{ab}$

Karnaugh Maps

- Graphical way to represent boolean functions
> Based on concept of distance
- Recognizing adjacent minterms is key to minimization of AND-OR expression
- K-map is a tool to minimize a two level circuit that it makes it easy to spot adjacent minterms
- Karnaugh Map is a truth table arranged so that adjacent entries represent minterms that differ by one.

Grouping minterms in K-Map

- Group 'cells' in K-map that are adjacent and have a value of 1 in the cell
> Group of 2 cells in 3 variable K-map: is an AND of two variables
> Group of 4 cells in 3 variable K-map: is single variable

Minimization using K-Maps

- Minimization procedure : determine best set of groups that will cover all the 1's in the Kmap
> "best" means the set that corresponds to a twolevel circuit with the least number of gates and the least number of inputs per gate.
> The number of groups equals number of AND gates
> We want the smallest number of groups with each group as large as possible such that the groups cover all the 1's

21

Example

$$
a^{\prime} b^{\prime}+a c
$$

25

Summary of Combinational Logic

- Combinational device/circuit: any circuit built using the basic gates
- Expressed as
> Truth table
> Digital circuit
> Boolean function
- Any boolean function can be expressed as two level function
- Minimization procedure: Karnaugh Map
> Try to minimize the number of gates, and inputs to gates, in a two level circuit

