


What is GDB?

GNU Project debugger

Used for debugging your C 
programs



How to use GDB

• GDB is already installed in the SEAS shell
• In case you wanted GDB (and valgrind) on 

a linux based system:
⚬ sudo apt-get install gdb valgrind



How to use GDB
• When you compile a C program with gcc, you can add 

flags like -o
⚬ ex: gcc example.c -o example
⚬ To execute this, run ./example

• When you want to use gdb, add the -g flag
⚬ ex: gcc -g example.c -o example
⚬ To execute this with gdb, run gdb ./example



How to use GDB
• This will not immediately run your program, but that is OK!
• If you just want to run your program in gdb, you can now 

type run (r)
• However, you will usually be using gdb when something is 

broken and you don't want to just run straight through 
your program



GDB: Breakpoints
• Breakpoints are a way of telling C to stop the program at a 

certain point
• You can examine memory once the program is stopped at 

a point
• Check contents of variables at a point in your code
• Great for debugging!
• Similar to using Java visualizer but more powerful



GDB: Breakpoints
• Set breakpoint

⚬ break <line num>
• Set breakpoint on function

⚬ break <func name>
• List of breakpoints

⚬ info breakpoints
• Remove breakpoints

⚬ clear <breakpoint num> ← retrieved from info
• Skip breakpoints

⚬ ignore <breakpoint num> ← retrieved from info
• You can also just type b instead of break



GDB: Breakpoints
• What if I have more than 1 file in my program?

⚬ Use this format to make a breakpoint for a specific 
file:

⚬ b filename.ext:line
⚬ example: b hello_world.c:25



GDB: Examining Code
• So, we hit a breakpoint. Now what?
• We can "step" through, line by line, by typing "next" or "n"

⚬ Tip: you can repeat commands in GDB just by hitting enter
• You can continue until the next breakpoint or the end of the program by 

typing "continue" or "c"
• Use "step" to go into a function

⚬ Use "finish" or "fin" to jump to the end of the function you are 
currently in

• Use "backtrace" or "bt" to see the stack, especially useful for a seg fault!



GDB: Examining Code
• You can also see the state of your data at this point in the 

program
• Use "print" or "p" and then the variable name you want to 

inspect
• You can also print all of your local variables with "info 

locals" or "i lo"
• Same with args, "info args" or "i args"



GDB: Common Commands
• run (r)
• break (b)
• next (n)
• continue (c)
• step (s)
• finish (fin)

• print (p)
• info locals (i lo)
• info args (i args)
• backtrace (bt)
• quit (q)
• There are many more! Just do a 

simple google search for gdb 
commands



For VS Code Users
• Using GDB in Visual Studio Code (on shell.seas.gwu.edu).
• See the full setup instructions here:
• https://gw-cs2461-2022.github.io/tutorials/VSCode_GDB_Tutorial.pdf 

1) Open debug panel 2) Debug active file 3) Select the debugging terminal

https://gw-cs2461-2022.github.io/tutorials/VSCode_GDB_Tutorial.pdf


Using VS Code Debugger (GDB)
• Using the debugger:

Set breakpoints

Variable values

Call Stack

● Continue
● Step Over
● Step Into
● Step Out
● Restart
● Stop

View breakpoints



Valgrind
• C allows the programmer all the power
• Memory management is left up to you
• malloc (realloc, calloc, etc.) gives you memory for use
• It is left up to you to tell the computer you are no longer 

using this memory (free), unlike other languages such as Java
• Num_of_mallocs = num_of_frees
• Data malloc’d should likely be free’d at the end of its scope 

(more specifically, its lifespan)



Valgrind
• Manually - count mallocs and count frees, if equal then 

you likely have no problem
• Or allow Valgrind to do the work for you
• valgrind ./example

⚬ works basically the same as gdb
• If you have missed frees, use the sizes and number of 

blocks to deduce where the issues are



Valgrind
• Valgrind has some options (flags) that you can use to get 

more info. about memory leaks, errors, etc.
⚬ Ex. valgrind -flag ./example

• -v or --verbose, tells you more info
• -s, shows error list
• --leak-check=full, each leak will be detailed
• more online, sometimes it will give you suggestions of 

what to use!



Exercise
• Download linkedlist.c ("Lab 12 Files" zip)

• Can download exercise in shell.seas.gwu.edu
•
•
• Fix the errors and memory leak(s) using GDB 

and valgrind
• There are 5 bugs and 1 memory leak


