Debugging with GDB and
Valgrind

KATE HALUSHKA & JONATHAN LEE 2022, LINNEA DIERKSHEIDE 2021,
JOHN SHEPHERD 2018, PHIL LOPREIATO, NEEL SHAH 2014

NU Project debugger

Used tor debugging your C
programs

« GDB Is already installed in the SEAS shell
» In case you wanted GDB (and valgrind) on
a linux based system:
O sudo apt-get install gdb valgrind

« When you compile a C program with gcc, you can add
flags like -0
O ex: gcc example.c -o example
O To execute this, run ./example
« When you want to use gdb, add the -g flag
O ex: gcc -g example.c -o example

O To execute this with , run gdb ./example

» This will not iImmediately run your program, but that is OK!

o If you just want to run your program in gdb, you can now
type run (r)

« However, you will usually be using gdb when something is
broken and you don't want to just run straight through

your program

» Breakpoints are a way of telling C to stop the program at a
certain point

« YOu can examine memory once the program is stopped at
a point

» Check contents of variables at a point in your code

» Great for debugging!

« Similar to using Java visualizer but more powerful

Set breakpoint
O break <line num>
Set breakpoint on function
O break <func name>
List of breakpoints
S Info breakpoints
Remove breakpoints
O clear <breakpoint num> <« retrieved from info
Skip breakpoints
O 1gnore <breakpoint num> < retrieved from info

You can also just type b instead of break

« What if I have more than 1 file in my program?
O Use this format to make a breakpoint for a specific
file:
:line

O example: :25

» S0, we hit a breakpoint. Now what?
« We can "step” through, line by line, by typing "next" or "n"
O Tip: you can repeat commands in GDB just by hitting enter
» You can continue until the next breakpoint or the end of the program by
typing "continue” or "c"
« Use "step” to go Into a function
O Use "finish” or "fin" to jump to the end of the function you are
currently in

« Use "backtrace" or "bt" to see the stack, especially useful for a seg fault!

* You can also see the state of your data at this point in the
program

» Use "print" or "p" and then the variable name you want to
Inspect

* You can also print all of your local variables with "info
locals” or "i l0"

« Same with args, "Info args" or "I args"

run (r) » print (p)
break (b) info locals (i lo)
- Info args (i args)

next (N
(n) « backtrace (bt)

continue (c)

- quit (q)
step (s) « There are many more! Just do a
finish (fin) simple google search for gdb

commands

» Using GDB in Visual Studio Code (on shell.seas.gwu.edu).
» See the full setup instructions here:

e hitps://gw-cs2461-2022.github.io/tutorials/VSCode GDB Tutorial.pdf

! File Edit Selection View Go + v A X

RUN AND DEBUG: RUN bash lab12
C/CH++:... V
38t cppd... (I W
Run and Debug

Select a configuration
To customize Run and Debug

C/C++: gcc build and debug active file
Detected Task (compiler: /usr/bin/gcc)

Default Configuration Ln144, Col 1 TabSize:4 UTF-8 CRLF C Linux A 0Q

1) Open debug panel 2) Debug active file 3) Select the debugging terminal

https://gw-cs2461-2022.github.io/tutorials/VSCode_GDB_Tutorial.pdf

» Using the debugger:

Variable values

Set breakpoints

Call Stack

View breakpoints

RUN.. D> NoCorv £ -

v VARIABLES
v Locals

> r: oxe

> Registers

v WATCH

v CALL STACK Paused on breakpoint
display(struct node * r)

main() llist 186:1

v BREAKPOINTS
B All C++ Exceptions
¥ linkedlist.c ~/lab12 146

linkedlistc > &

b S ¥ 3T OO

lab12 > (

SRS AR A

r=head;
if(r==NULL)

I
L

1
J

return;

while(1)

r
L

1
J

praintE(CXn");

e N A
'RORI ENMS 0
PROBLEMS JUTPU

TERMINAL

Enter your choice : 1
Enter the number to insert

List Operations

1.Insert
2.Display
3.Size
4 .Delete
5.Exit

Enter your choice : 2

X SSH: shellseas.gwuedu P main* & ®0A0 @Wo o

-~ NORMAL --

“ienlay(node *)

: 4

Do & M -

printf("%d ",r->data);
=r->next;

+ v AN X
bash lab12

C/C++:... V

3%t cppdbg: lin...

CRLF C Linux & Q

|3 st 2 e I I
Continue
Step Over
Step Into

Step Out

Restart

Stop

 C allows the programmer all the power

« Memory management is left up to you

- malloc (realloc, calloc, etc.) gives you memory for use

o It is left up to you to tell the computer you are no longer
using this memory (free), unlike other languages such as Java

« Num of mallocs = num of frees

» Data malloc’d should likely be free’'d at the end of its scope

(more specifically, its lifespan)

» Manually - count mallocs and count frees, if equal then
you likely have no problem
 Or allow Valgrind to do the work for you
e valgrind ./example
O works basically the same as gdb
 If you have missed frees, use the sizes and number of

blocks to deduce where the issues are

Valgrind has some options (flags) that you can use to get
more info. about memory leaks, errors, etc.
O Ex.valgrind -flag ./example
-v or --verbose, tells you more info
-5, shows error list
--leak-check=tull, each leak will be detailed
more online, sometimes It will give you suggestions of

what to use!

« Download linkedlist.c ("Lab 12 Files" zip)

« Can download exercise in shell.seas.gwu.edu

wget https://gw-cs2461-2022.github.1o/lectures/labl2.zip
unzip labl2.zip

cd labl2
 Fix the errors and memory leak(s) using GDB

and valgrind

« There are 5 bugs and 1 memory leak

